

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

Ground Investigations Ireland

Hackettstown, Skerries – Southern Greenfield site

DBFL

Ground Investigation Report

July 2020

Directors: Fergal McNamara (MD), James Lombard, Conor Finnerty, Aisling McDonnell & Barry Sexton Ground Investigations Ireland Limited | Registered in Ireland Company Regsitration No.: 405726

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	Hackettstown, Skerries – Southern Greenfield site
Engineer	DBFL
Client	DBFL
Project No	9225-11-19
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
А	DRAFT	M Sutton	A McDonnell	A McDonnell	Dublin	07 April 2020
В	REV B	M Sutton	M Sutton A McDonnell A McDonnell		Dublin	04 June 2020
С	FINAL	M Sutton	A McDonnell	A McDonnell	Dublin	11 June 2020
D	FINAL	M Sutton	A McDonnell	A McDonnell	Dublin	10 July 2020

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

 Tel:
 01 601 5175 / 5176

 Email:
 info@gii.ie

 Web:
 www.gii.ie

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

CONTENTS

1.0	Preamble5
2.0	Overview5
2.1.	Background5
2.2.	Purpose and Scope5
3.0	Subsurface Exploration5
3.1.	General5
3.2.	Trial Pits6
3.3.	Soakaway Testing6
3.4.	Dynamic Probing
3.5.	Cable Percussion Boreholes
3.6.	Rotary Boreholes7
3.7.	Surveying7
3.8.	Laboratory Testing7
4.0	Ground Conditions
4.1.	General8
4.2.	Insitu Strength Testing9
4.3.	Groundwater9
4.4.	Laboratory Testing10
4.4.1.	Geotechnical Laboratory Testing10
4.4.1.	Chemical Laboratory Testing10
4.4.1.	Environmental Laboratory Testing10
4.4.1.	Rock Laboratory Testing11
5.0	Recommendations & Conclusions12
5.1.	General12
5.2.	Foundations12
5.3.	Foundations for Bridge Culvert13
5.4.	Groundwater14
5.5.	Chemical Testing Results14
5.6.	External Pavements14
5.7.	Excavations15
5.8.	Soakaway Design15

 Tel:
 01 601 5175 / 5176

 Email:
 info@gii.ie

 Web:
 www.gii.ie

APPENDICES

- Appendix 1 Site Location Plan
- Appendix 2 Trial Pit Records
- Appendix 3 Soakaway Results
- Appendix 4 Dynamic Probe Records
- Appendix 5 Cable Percussion and Rotary Borehole Records
- Appendix 6 Laboratory Testing
- Appendix 7 Groundwater Monitoring

1.0 Preamble

On the instructions of DBFL, a site investigation was carried out by Ground Investigations Ireland Ltd., between November 2019 and March 2020 at the site of the proposed new residential development in Hackettstown, Skerries, Co. Dublin.

2.0 Overview

2.1. Background

It is proposed to construct a residential development with associated services, access roads and car parking at the proposed site. The site is currently greenfield agricultural land and is situated on the outskirts of Skerries Village.

The proposed construction is envisaged to consist 2 to 3 story housing and 4 story apartment blocks with conventional or piled foundations and pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 13 No. Trial Pits to a maximum depth of 4.0m BGL
- Carry out 5 No. Soakaways to determine a soil infiltration value to BRE digest 365
- Carry out 25 No. Dynamic Probes to determine soil strength/density characteristics
- Carry out 8 No. Cable Percussion boreholes to a maximum depth of 7.10m BGL
- Carry out 5 No Rotary boreholes to a maximum depth of 17.20m BGL
- Geotechnical & Environmental Laboratory testing

Investigation and testing (ISEN 1997 - 2:2007) and B.S. 5930:2015.

Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling. The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground

3.2. Trial Pits

The trial pits were excavated using a 8.5T tracked excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered, and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

3.3. Soakaway Testing

The soakaway testing was carried out in selected trial pits at the locations shown in the exploratory hole location plan in Appendix 1. These pits were carefully excavated and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level was recorded over time as required by BRE Digest 365. The pits were logged prior to completing the soakaway test and were backfilled with arising's upon completion. The soakaway test results are provided in Appendix 3 of this Report.

3.4. Dynamic Probing

The dynamic probe tests (DPH) were carried out at the locations shown in the location plan in Appendix 1 in accordance with B.S. 1377: Part 9 1990. The test consists of mechanically driving a cone with a 50kg weight in 100mm intervals and monitoring the number of blows required. An equivalent Standard Penetration Test (SPT) 'N' value may be calculated by dividing the total number of blows over a 300mm drive length by 1.5. The dynamic probe logs are provided in Appendix 4 of this Report.

3.5. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata. Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists

of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 5 of this Report.

3.6. Rotary Boreholes

The rotary coring was carried out by a track mounted T44 Beretta rig at the locations shown on the location plan in Appendix 1. The rotary boreholes were completed from the ground surface or alternatively, where noted on the individual borehole log, from the base of the cable percussion borehole where a temporary liner was installed to facilitate follow-on rotary coring.

The T44 Beretta is equipped with rubber tracks which allow for short travel on pavement surfaces avoiding any damage to the surface. The T44 Beretta utilises a triple tube core barrel system operated using a wireline drilling process. The outer barrel is rotated by the drill rods and at its lower end, carries the coring bit. The inner barrel is mounted on a swivel so that it does not rotate during the process. The third barrel or liner is placed within the second one to retain the core intact and to preserve as much as possible the fabric of the drilling stratum. The core is cut by the coring bit and passes to the inner liner. The core is brought up to the surface within the inner barrel on a small diameter wire rope or line attached to the "overshoot" recovery tool which is then placed into a core box in order of recovery. A drilling fluid, typically air mist or water flush is passed from the surface through hollow drill rods to the drill bit, and is used to cool the drill bit. Temporary casing is used in some situations to support unstable ground or to seal off fissures or voids. It should be noted that the rotary coring can only achieve limited recovery in overburden, particularly granular or weakly cemented strata due to the flushing medium washing away the cohesive fraction during coring. The recovery achieved, where required is noted on the borehole logs and core photographs are provided to allow assessment of the core recovered. The rotary borehole logs are provided in Appendix 5 of this Report.

3.7. Surveying

The exploratory hole locations have been recorded using a KQ GEO Technologies KQ-M8 System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.8. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental & Chemical testing as required by the specification, including the Rilta Suite pH and sulphate testing was carried out by Element Materials Technology Laboratory in the UK. The Rilta suite testing includes both Solid Waste and Leachate Waste Acceptance Criteria.

Geotechnical testing consisting of moisture content, Atterberg limits, Particle Size Distribution (PSD), hydrometer, California Bearing Ratio (CBR), tests were carried out in NMTL's Geotechnical Laboratory in Carlow.

Rock strength testing including Point Load (Is₅₀) testing was carried out in NMTL's Geotechnical Laboratory in Carlow. The results of the laboratory testing are included in Appendix 6 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were variable across the site but generally comprised;

- Topsoil
- Made Ground
- Cohesive Deposits
- Granular Deposits
- Bedrock

TOPSOIL: Topsoil was encountered in all of the exploratory holes on the site and was present to a maximum depth of 0.5m BGL.

MADE GROUND: Made Ground deposits were not prominent in the southern greenfield part of the site. However it was encountered in TPI17 and TP10 to a maximum depth of 1m BGL that was described generally as *brown slightly sandy slightly gravelly Clay.* These deposits had occasional or some cobble content where noted on the exploratory hole logs. It should be noted that TP13 is located to the north of the site boundary and also encountered Made ground to a depth of 2.60m BGL that consisted of clayey gravelly Sand or sandy gravelly Clay.

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the topsoil and were described typically as *brown sandy gravelly CLAY / silty CLAY with occasional cobbles and boulders*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. These deposits had some, occasional or frequent cobble and boulder content where noted on the exploratory hole logs.

The strength of the cohesive deposits varied across the site but generally increased with depth and was typically soft to depths of between 1.7 and 3.4m BGL overlaying firm, firm to stiff or stiff in the majority of the exploratory holes.

GRANULAR DEPOSITS: The granular deposits were encountered within the cohesive deposits and were typically described as *grey or brown clayey sandy sub rounded to sub angular fine to coarse GRAVEL* or *gravelly fine to coarse SAND*. The secondary sand/gravel and silt/clay constituents varied across the site and with depth while occasional or frequent cobble and boulder content was also present where noted on the exploratory hole logs.

Based on the SPT N values the deposits are typically medium dense and become dense with depth although loose deposits were recorded in places. It should be noted that some of the trial pits where granular deposits or groundwater were encountered, experienced instability. This was described either as side wall spalling or as side wall collapse in the remarks section at the base of the trial pit logs. Groundwater strikes were noted in the majority of the boreholes generally on encountering or within the granular deposits.

BEDROCK: The rotary core boreholes recovered medium strong to strong grey fine grained LIMESTONE. Rare to some Calcite veins were noted during logging which are typically present within the Limestone. The depth to medium strong to strong limestone rock varies from 9.8m BGL in BH02 to 13.2m BGL in BH09. Limestone was not encountered in RC10 before 17.2m BGL but hard pinkish grey gravelly CLAY which is described as possible weathered rock was encountered at a depth of 14.6m BGL. The total core recovery is good, typically 100% with some of the uppermost runs dropping to 80 or 90%. The SCR and RQD both are relatively good although some areas are recovered as non-intact.

4.2. Insitu Strength Testing

The correlated DPH blow counts indicate that the overburden deposits on the site are soft or soft to firm / loose to depths of 1.1m to 3.4m BGL and become firm or firm to stiff / medium dense with depth. Some areas show deeper soft materials particularly the western side of the site where DP08, DP09, DP04, DP01, BH07 and BH03 are located. These locations coincide with a depression at the surface and indicate soft or soft to firm cohesive material or loose granular materials to depths of between 2.00m and 3.40m BGL.

4.3. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred and where possible drilling was suspended for twenty minutes to allow the subsequent rise in groundwater to be recorded. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the tide, time of year, rainfall, nearby construction and other factors. For this reason, standpipes were installed in BH03, BH05A, BH07, and RC09 to allow the equilibrium groundwater level to be determined. The groundwater monitoring is included in Appendix 7 of this Report.

4.4. Laboratory Testing

4.4.1. Geotechnical Laboratory Testing

The geotechnical testing carried out on soil samples recovered generally confirm the descriptions on the logs with the primary constituent of the cohesive deposits found to be a CLAY of low plasticity. The Particle Size Distribution tests confirm that generally the cohesive deposits are well-graded with percentages of sands and gravels ranging between 13% and 45% generally with fines contents of 30 to 50%.

The Particle Size Distribution tests confirm that generally the granular deposits are well-graded with percentages of sands/gravels and silt/clay typically between 25% and 35% with a gravel/sand content of typically 60% to 70%.

The CBR testing on remoulded samples from the site gave results ranging between 0.08% and 1.45% for the cohesive deposits.

4.4.1. Chemical Laboratory Testing

The pH and sulphate testing carried out indicate that pH results are near neutral and that the water soluble sulphate results is low when compared to the guideline values from BRE Special Digest 1:2005. The samples tested classify the soil as a Design Sulphate Level DS-1.

4.4.1. Environmental Laboratory Testing

A number of samples were analysed for a suite of parameters which allows for the assessment of the sampled material in terms of total pollutant content for classification of materials as *hazardous* or *non-hazardous*. The suite also allows for the assessment of the sampled material in terms of suitability for placement at licenced landfills (inert, stable non-reactive, hazardous etc.). The parameter list for the suite includes analysis of the solid samples for arsenic, barium, cadmium, chromium, copper, cyanide, lead, nickel, mercury, zinc, speciated aliphatic and aromatic petroleum hydrocarbons, pH, sulphate, sulphide, moisture content, soil organic matter and an asbestos screen.

The suite also includes those parameters specified in the EU Council Decision establishing criteria for the acceptance of waste at Landfills (Council Decision 2003/33/EC), which for the solid samples are total organic carbon (TOC), speciated aliphatic and aromatic petroleum hydrocarbons, BTEX, phenol, polychlorinated biphenyls (PCB) and PAH.

As part of the suite a leachate is generated from the solid sample which is analysed for antimony, arsenic, barium, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, chloride, fluoride, soluble sulphate, sulphide, phenols, dissolved organic carbon (DOC) and total dissolved solids (TDS).

While the laboratory report provides a comparison with the waste acceptance criteria limits it does not provide a waste classification of the material sampled nor does it comment on any potentially hazardous properties of the materials tested. The possibility for contamination, not revealed by the testing undertaken should be borne in mind particularly where Made Ground deposits are present or the previous site use or location indicate a risk of environmental variation.

The waste classification report is included under the cover of a sperate report by Ground Investigations Ireland.

4.4.1.Rock Laboratory Testing

The point load testing carried out on samples recovered from the boreholes gave Is50 values ranging between 1.4 to 5.4 MPa. The Is₅₀ results correlate to the UCS values using a factor of approximately 20, giving values of 28 MPa and 108 MPa. These results correlate to the strength descriptions ranging between of Medium Strong to Very Strong and confirming the variability of this stratum and the descriptions on the logs. The average of the correlated values from the point loading suggest the rock is typically Strong. The results from the completed laboratory testing is included in Appendix 6 of this report.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Foundations

The ground conditions on the southern greenfield part of the site are variable including soft compressible soils. Due to the variation in conditions, depths have been provided in table 1 at each of the investigation locations where an allowable bearing capacity of 100 kN/m2 and 200kN/m2 is achievable for conventional strip or pad foundations on the firm to stiff / stiff cohesive deposits or medium dense granular deposits. The possibility for variation in the depth of the soft or loose deposits in the vicinity of these foundations should be considered and foundation inspections should be carried out. Any areas where suitable bearing strata is deep or soft spots encountered at the proposed foundation depths should be excavated and replaced with lean mix concrete.

	A	Allowable Be	earing Capacities	s (ABC) kN/r	n2		
Probe /	100 Kn	200 Kn	Comment	Probe /	100 Kn	200 Kn	Comment
Borehole	/M2 ABC	/M2 ABC		Borehole	/M2 ABC	/M2 ABC	
No	Depth	Depth m		No	Depth	Depth m	
NO.	mBGL	BGL		NO.	mBGL	BGL	
DP01	2.7	3.7		DP18	1.8	2.3	
DP02	1.5	3.3		DP19	2.4	2.9	
DP03	1.1	2.2		DP20	1.7	2.4	
DP04	2.8	3.6		DP21	1.8	2.6	
DP05A	1.3	N/A	Refusal at 1.4	DP22	1.2	1.5	
DP06	1.7	2.4		DP23	1.7	1.9	
DP07	1.4	N/A		DP24	2.5	2.7	
DP08	3.6	4.4		DP25	1.6	2.0	
DP09	2.1	2.6		BH01	5.7	5.7	Bridge
DP10	1.8	3.2		BH02	1.7	3.8	culvert, See section 5.3
DP11	2.1	5.0		BH03	3.0	4.0	
DP12	1.2	1.7		BH04	2.0	2.0	
DP13	1.2	2.2		BH05	2.0	2.0	
DP14	1.7	2.2		BH05A	2.0	2.0	
DP15	2.5	2.9		BH06	2.1	2.1	
DP16	1.7	2.3		BH07	3.4	3.4	
DP17	2.0	2.0					
In areas w	ith deeper so	oft / loose gro	ound conditions a	nd/or higher	loadings, pilir	ig may be m	ore
economica	al, see below						

Table 1 - Allowable Bearing Capacities at Investigation Locations on Green Field Site

Where possible a ground bearing floor slab is recommended to be based on the firm or firm to stiff / cohesive deposits or medium dense granular deposits with an appropriate depth of compacted hardcore specified by the consulting engineer and in accordance with the limits and guidelines in SR21:2014+A1:2016 and/or NRA SRW CL808 Type E granular stone fill. Where the depth of Made Ground/Soft deposits exceeds 0.9m then suspended floor slabs should be considered.

Due to the variation in ground conditions we would recommend that all the foundations from individual buildings are founded in the same stratum to avoid differential settlement. This is particularly important to consider for longer sections of connected buildings that are more likely to cross areas of differing ground conditions i.e. apartment blocks, terraced housing.

Due to the presence of soft and compressible cohesive or loose granular deposits beneath the footprint of the proposed structures on some parts of the site conventional foundations may not be practical. In these areas piled foundations may be more economically advantageous for the proposed buildings particularly where higher loading is anticipated at the location of the proposed 3 or 4 story buildings. The deepest depths shown in the table are due to the increased depth of softer/loose materials and give an indication of the areas of the site where piling may be required. As mentioned in section 4.2 of this report the western part of the greenfield site is one area where the probes and boreholes indicate deeper soft/loose materials. The type, size and depth of the pile foundations should be confirmed by a specialist piling contractor based on the loading from the proposed building. The floor slab is recommended be suspended and also supported on the building piles. Negative skin friction from the very soft cohesive deposits should be considered in the pile design due to the possibility of loading from working platforms or the adjacent pavement make up. The slope leading to the stream should also be considered when determining foundation types as loading and excavation could cause instability meaning piled foundations may be more suitable if buildings with higher loadings are proposed in this area.

The recommended bearing capacity that can be achieved on the limestone rock would be in excess of 1000 kN/m2.

When the location and loading of buildings has been finalised for the proposed development it may be economically advantageous to undertake additional investigation to determine the extents of softer ground and the types of foundation that could be used for individual structures.

5.3. Foundations for Bridge Culvert

Due to the presence of variable made ground beneath the footprint of the northside of the proposed bridge in the location of BH01 and soft materials on the south site of the bridge at the location of BH02, piled foundations may be required, However when proposed bridge culvert loadings are finalised foundation type can be determined.

The type, size and depth of the pile foundations should be confirmed by a specialist piling contractor based on the loading from the proposed building.

Negative skin friction from the very soft cohesive deposits should be considered in the pile design due to the possibility of loading from working platforms or the adjacent pavement make up.

5.4. Groundwater

Bearing capacities provided within the report take into account the groundwater level. The design ground water level for the site are provided in the table below water levels were generally higher towards the northern part of the site nearer to the stream so levels in the eastern and western parts of the site are based on the highest reading recorded. Piezometers were not installed in all areas of the site so water levels provided are based on where water was encounter during excavation of trial pits and boreholes and may not represent standing water levels.

Area	Design Groundwater level	Investigation locations considered	Notes					
Western part of site	1.0m BGL	Piezo in BH03 and BH07	Based on piezometer					
(Purple area*)			readings					
Eastern part of site	1.5m BGL	Piezo in BH05, RC09,	Based on piezo readings					
(Green area*)		BH06	in BH05 and BH09 and					
			borehole records in BH06					
*Water levels based on rea	ding taken in summer month	s, levels would be expected t	o vary with the tide, time					
of year, rainfall, nearby construction and other factors.								
** Figure 2 in appendix 1 sh	nows DBFL designated areas of	on site.						

The groundwater monitoring is included in Appendix 7 of this Report.

5.5. Chemical Testing Results

The pH and sulphate testing completed on samples recovered from the exploratory holes across the northern green field and southern brown field parts of the site indicates the pH results are near neutral and the sulphate results are low, when compared to the guideline values from BRE Special Digest 1:2005. No special precautions are required for concrete foundations to prevent sulphate attack. The samples tested were below the limits of DS1 in the BRE Special Digest 1:2005.

5.6. External Pavements

The proposed pavements are recommended to be designed in accordance with the CBR test results included in the Appendixes of this Report. The low CBR test results from the southern part of the site indicate that a capping layer or a sufficient depth of crushed stone fill may be required. The CBR values gained from the northern part of the site were higher but should be used with caution due to the likely variation within the made ground. Plate bearing tests are recommended at the time of construction to verify the design assumptions for the proposed pavement make up and to verify adequate compaction has been achieved.

The use of a geogrid and separation membrane may improve the performance of the proposed pavement and enable a more economical pavement design to be achieved, a specialist supplier is recommended to advise of the required strength, depth and type of geotextile for the proposed design.

5.7. Excavations

Short term temporary excavations in the cohesive deposits will remain stable for a limited time only and will require to be appropriately battered or the sides supported if the excavation is below 1.25m BGL or is required to permit man entry.

Excavations in the Made Ground or soft Cohesive Deposits will require to be appropriately battered or the sides supported due to the low strength of these deposits.

Any excavations which penetrate the granular deposits will require to be appropriately battered or the sides supported and are likely to require dewatering due to the groundwater seepages noted in the exploratory hole logs in the Appendices of this Report.

The groundwater and stability noted on the trial pit logs should be consulted when determining the most appropriate construction methods for excavations.

Excavations in the upper cohesive and granular deposits are expected to be excavatable with conventional excavation equipment. Due to the depth that rock was encountered excavations in rock are not anticipated to be required.

5.8. Soakaway Design

An infiltration rate of $f=8.2 \times 10^{-6}$ m/s were calculated for the soakaway location TPI16. At the locations of TPI14, TPI15, TPI17A, and TPI18 the water level dropped too slowly to allow calculation of 'f' the soil infiltration rate. These locations are therefore not recommended as suitable for soakaway design and construction.

The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

APPENDIX 1 - Site Location Plan

724900E 725000E 725100E 725200E **TP13 BH01** TPI18 BH03 **TP12** DP02 BH02 DPO1 😶 BHO7 🔶 BH04) **TP11** 759200N **DP21** BH05 **RC08 TP10** TPE17 CBR26 CBR25 BH05A DP03 DP05 TPI17A DP04 DP22 ✤ BH06 TPI16 • TP04 CBR24 **RC10** DP06 **~** DP07 DP24DP19 TP09 DP08 DP23 TP05 (\bullet) CBR22 759100N TP03 TPI15 CBR23 **DP13 DP18** TPE14 **RC09** TP02 **DP12** DP17 DP14 DP09 DP25 DP15 CBR21 DP20 CBR20 CBR19 **DP10** 759000N **DP16** TP01 TP07 **DP11 TP06**

759300N

759200N

759100N

759000N

Ground Investigations Ireland Ltd. Catherinstown House, Hazelhatch Road, Newcastle, Co. Dublin 01-6015175/5176 www.gii.ie

0

Project Title: lackettstown	, Skerries -	- 	Bc
Drawing Title		Tr	
SII Project R	•	Dy	
0225-11-19			CE
Prawn By: IS	Date: 03/07/2020		In

758900N

759300N

724900E 725000E 725100E 725200E 759300N 759300N **TP13 BH01** TPI18 BH03 **TP12** BH02 DP02 DP01 BH07 BH04 **TP11** 759200N 759200N **DP21** BH05 **RC08 TP10** TPH17 CBR26 CBR25 BH05A DP03 DP05 TPI17A DP04 DP22 BH06 TPI16 TP04 CBR24 **RC10** DP06 DP07 TP09 DP08 DP24DP19 DP23 TP05 CBR22 759100N 759100N TP03 TPI15 CBR23 **DP13 DP18** TPI14 **RC09** TP02 **DP12 DP14 TP08** DP09 DP25 **DP15 DP17** CBR21 DP20 CBR20 CBR19 **DP10** 759000N 759000N **DP16 TP01** TP07 **DP11** TP06 758900N

758900N

Ground Investigations Ireland Ltd. Catherinstown House, Hazelhatch Road, Newcastle, Co. Dublin 01-6015175/5176 www.gii.ie

ADV STRUCT	CALL PROPERTY AND IN	Contra altera						
Clie	nt:			Project Title: Hackettstown, Sker				
		귝		Drawing Title: Figure 2 Site zones				
		-		Gll Project Reference:				
				9225-11-19				
0	20	40	60 m	Drawn By: MS	Date: 03/07/2020			

Skerries

APPENDIX 2 - Trial Pit Records

S	Grou	nd In	vestigations Ire www.gii.ie	Ltd	Site Hackettstown, Skerries		Trial Pit Number TP01	•	
Machine: 8. Method : T	.5T Excavator rial Pit	Dimens 1.0m x	ions 2.5m x 3.40m	Ground	Level (mOD) 24.45	Client DBFL		Job Number 9225-11-1	19
		Locatio	n (dGPS) 4937.8 E 758999.6 N	Dates 28	8/11/2019	Project Contractor Ground Investigations Irel:	and	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
0.70	В			24.25	(0.20) 0.20 (1.00) (1.00)	Brown slightly sandy sligh Soft to firm orange brown CLAY. Gravel is sub-angul Sand is fine to coarse.	tly gravelly TOPSOIL. slightly sandy slightly grave ar to sub rounded fine to co	lly arse.	
1.50	В		Water strike(1) at 1.50m.	23.25	(0.60)	Firm brown slightly sandy cobbles and occasional bo 1.5m-2.30m). Gravel is su coarse. Sand is fine to coa	slightly gravelly CLAY with s oulders. (Band of clayey gra b-angular to sub-rounded fi arse.	some vel at ne to	Z 1
				22.65	- 1.80 - (0.50) - 2.30	Firm to stiff brown slightly some cobbles and occasic gravel at 1.5m-2.30m). Gr sub-rounded fine to coarso	sandy slightly gravelly CLA onal boulders. (Band of clay avel is sub-angular to e. Sand is fine to coarse. slightly sandy slightly grave	with ey	
2.70	В			21 35	(0.80)	silty CLAY with occasional sub-angular to sub-rounde coarse.	cobbles and boulders. Gra	vel is Oas Constraints (Constraints) (Constr	
				21.05	(0.30) - 3.40	Stiff reddish brown slightly occasional cobbles and bo sub-rounded fine to coarse	sandy slightly gravelly CLA oulders. Gravel is sub-angul e. Sand is fine to coarse.	Y with ar to	
						Complete at 3.40m			
Plan .	· ·	•		•	'	⊥ Remarks	om 0, 5, 3, 0m		
		•		•		Trial pit backfilled on comple Groundwater seepage from	ulue to collapse. tion. 1.5-2.0m		
· ·	· ·			- ·	· ·				
				. .	s	Scale (approx) 1:25	Logged By MS	Figure No. 9225-11-19.TP0	

	Ground Investigations Ireland Ltd									Site Trial Pin Hackettstown, Skerries TP02			
Machine : 8 Method : T	8.5T Excava Trial Pit	tor	Dimens 10m x 2	ions 2.5m x 3.	.6m		Ground	Leve 23.91	l (mOD)	Client DBFL			Job Number 9225-11-19
			Locatio	n (dGPS 4920.1 E	s) 5759057	.4 N	Dates 28	3/11/20	019	Project Contractor Ground Investigations Irela	and		Sheet 1/1
Depth (m)	Sample	/ Tests	Water Depth (m)		Field Re	cords	Level (mOD)	D (Thio	epth (m) ckness)	D	escription		Kate bneged
							00.01		(0.30)	Brown slightly gravelly slig	htly sandy TOPSOIL.		
0.50	B1						23.61		0.30	Soft to firm brown slightly occasional sub-angular to sub-angular to sub-rounde coarse.	sandy slightly gravelly CLAY sub-rounded cobbles. Grav ed, fine to coarse. Sand is fin	/ with vel is ne to	0.000 0.0000 0.0000
									(0.70)			- - -	
1.20	B2						22.91		1.00	Soft to frim brown slightly occasional sub-angular to sub-angular to sub-rounde coarse.	sandy slightly gravelly CLA sub-rounded cobbles. Grav d, fine to coarse. Sand is fi	Y with vel is ne to	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
									(1.00)			, , , ,	0,0,0 0,0,0,0 0,0,0,0,000000
							21.91		2.00 (0.50)	Firm reddish brown slightl with occasional sub-angul Gravel is sub-angular to s	y sandy slightly gravelly CL/ ar to sub-rounded cobbles. ub-rounded, fine to coarse.	AY	0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.80	ВЗ						21.41		2.50	Stiff reddish brown slightly occasional sub-angular to sub-angular to sub-rounde	sandy slightly gravelly CLA sub-rounded cobbles. Grav d, fine to coarse.	Y with rel is	0.00 0.00
				Water s	strike(1) a	at 3.30m.			(1.10)			- - -	<u>6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</u>
							20.31		3.60	Complete at 3.60m			10-10-00 10-10-00 10-10-00 10-10-00
Plan .								E	. 1	Remarks			
										Moderate water inflow from Trial pit terminated due to co Trial pit sidewall collapse fro Trial pit backfilled on comple	3.30m. Illapse and water inflow. m all sides. tion.		
							•						
			·	·			-						
						·	-	•	. 5	Scale (approx) 1:25	Logged By MS	Figure 9225-1	No. 11-19.TP02

S	Grou	and Inv	vestigatio www.gii	ons Irel .ie	and	Ltd	Site Hackettstown, Skerries		Trial Pit Number TP03
Machine:8 Method:7	3.5T Excavator Frial Pit	Dimensi 1m x 2.5	ons 5m x 3.7m		Ground	Level (mOD 23.76) Client DBFL		Job Number 9225-11-19
		Location 724	ı (dGPS) 916.1 E 759098.	7 N	Dates 28	8/11/2019	Project Contractor Ground Investigations Irel	and	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Red	cords	Level (mOD)	Depth (m) (Thickness) D	escription	Legend S
					23.46	(0.30) (0.30) 0.30	Brown slightly sandy sligh Soft brown slightly sandy is sub-angular to sub-rour	tly gravelly TOPSOIL. slightly gravelly silty CLAY. G ided fine to coarse. Sand is f	ravel
0.50	В				23.06	(0.40) 0.70	Soft orangey brown slight CLAY Gravel is sub-angul Sand is fine to coarse.	ly sandy slightly gravelly ar to sub-rounded fine to coa	IFSE.
1.00	В								
1.20	В					(1.30) (1.30) 	,		
2.00	В				21.76	2.00 (0.50)	Soft slightly gravelly sand sub-angular to rounded co rounded fine to coarse. Sa	y CLAY with occasional bbles. Gravel is sub-angula and is fine to coarse.	r to
3.00	в				21.26	2.50 (0.90)	Loose red brown very cla with occasional sub-angu sub-angular to rounded fir	yey gravelly fine to coarse S/ ar to rounded cobbles. Grav ne to coarse.	6 5 6 7 0 el is 0 7 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
					20.36 20.06	3.40 (0.30) 3.70	Medium dense red brown coarse SAND with occasi cobbles. Gravel is sub-an Complete at 3.70m	very clayey gravelly fine to onal sub-angular to rounded gular to rounded fine to coars	se.
Plan	· ·		· ·	•		· ·	Remarks		
							I rial pit side wall collapse. Trial pit terminated due to co Trial pit backfilled on compl No groundwater encountere	ollapse. etion. ed during excavation.	
			· ·	-		•••			
· ·	· ·	•	· ·	•	 				
			· ·	-		••••	Scale (approx)	Logged By	Figure No.
							1:25	MS	9225-11-19.TP03

	Grou	nd In	vestiga www.	itions Ire gii.ie	Site Hackettstown, Skerries	Site Hackettstown, Skerries			r L		
Machine: 8. Method : T	.5T Excavator rial Pit	Dimens 1.0m x	s ions 2.5m x 3.30m	1	Ground	Level (mOE 23.11) Client DBFL		ę	Job Number 9225-11-1	r 19
		Locatio	on (dGPS) 24923.6 E 759	150.2 N	Dates 29	0/11/2019	Project Contractor Ground Investigations Irel	and		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness) D	escription	L	Legend	Water
0.50	В		Water strike	(1) at 0.90m.	22.91	(0.20 0.20 (0.90	TOPSOIL. Soft brown sandy gravelly sub-angular to sub-rounde lenses. Gravel is sub-angu coarse. Sand is fine to coa	silty CLAY with occasional ed cobbles and occasional s ular to sub-rounded, fine to arse.	sandy	Z	∇ 1
1.50	В				22.01	- 1.10 - 1.10 	Soft to firm brown sandy g sub-angular to sub-rounde lenses. Gravel is sub-ang coarse. Sand is fine to coa	pravelly silty CLAY with occa ed cobbles and occasional s ular to sub-rounded, fine to arse.	sional x andy x x x x x x x x x x x x x x x x x x x		
2.50	В				20.31	- 2.80 - 2.80 - (0.50	Firm to stiff brown sandy g sub-angular to sub-rounde lenses. Gravel is sub-ang coarse. Sand is fine to coa	gravelly silty CLAY with occa of cobbles and occasional s ular to sub-rounded, fine to arse.	isional ×		
			Water strike	(2) at 3.30m.	19.81	3.30	Complete at 3.30m		×	<u> </u>	Z 2
Plan							Remarks	at 0.9m. Steady trickle		, i	
		•					Groundwater encountered a Trial pit side wall collapse. Trial pit terminated due to un Trial pit backfilled on complete	at 3.30m. nstability. etion.			
		•			-	· ·					
		•		•		· ·		1			
	-						Scale (approx) 1:25	Logged By MMC	Figure 9225-1	No. 1-19.TP0)4

SI	Grou	ind In	vestiga www.g	tions Ire gii.ie	Ltd	Site Hackettstown, Skerries		Trial Pit Number TP05	
Machine: 8. Method : Tr	5T Excavator ial Pit	Dimensi 1.0m x 2	i ons 2.5m x 3.5m		Ground	Level (mOD) 24.89) Client DBFL		Job Number 9225-11-19
		Location 724	n (dGPS) 1969.3 E 7591	08.8 N	Dates 28	8/11/2019	Project Contractor Ground Investigations Irel	and	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness	D	escription	Legend Safe
					24.49	(0.40) - (0.40) - 0.40	Dark brown slightly sandy Loose reddish brown clay Gravel is sub-angular to s	slightly gravelly TOPSOIL ey gravelly fine to coarse S/ ub-rounded, fine to coarse.	AND.
0.60	В					 (0.90) 			
1.50	В				23.59	- 1.30 - 1.30	Firm to stiff brown slightly occasional sub-angular to sub-angular to sub-rounde coarse.	sandy slightly gravelly CLA sub-rounded cobbles.Grav ed, fine to coarse. Sand is fi	$\begin{array}{c} \hline \begin{array}{c} \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ $
2.50	В				22.69	- 2.20 - 2.20 	Yellow brown clayey grave occasional sub-angular to sub-angular to sub-rounde predominantly fine to med	elly fine to coarse SAND witt sub-rounded cobbles. Grav d fine to coarse. Sand is ium.	a <u>v a</u>
3.50	В				21.39	- - - - - - - - - - - - - - - - - - -	Complete at 3.50m		
Plan							Remarks Trial pit terminated due to di	fficult excavation.	
							No groundwater encountere Trial pit stable. Trial pit backfilled on comple	d during excavation.	
					· ·	•••			
 	· ·	•	· ·						
						· · ·	Scale (approx) 1:25	Logged By MS	Figure No. 9225-11-19.TP05

	Grou	nd In	vestigations Ire www.gii.ie	eland	Ltd	Site Hackettstown, Skerries		Trial Pit Number TP06
Machine:8	.5T Excavator	Dimens	ions	Ground	Level (mOE 24.90) Client DBFL		Job Number
								9225-11-19
		Locatio	n (dGPS) 5007 9 E 758992 1 N	Dates 28	3/11/2019	Project Contractor	and	Sheet
					-			
(m)	Sample / Tests	Depth (m)	Field Records	(mOD)	Uepth (m) (Thickness	s) [escription	Legend S
0.50	в			24.70	(0.20 - 0.20 	Brown slightly sandy sligh Soft to firm brown slightly is sub-angular to sub-rour to coarse.	tly gravelly TOPSOIL. gravelly very sandy CLAY.Gi ided, fine to coarse. Sand is	ravel
			Water strike(1) at 1.00m.	24.00	0.90	Soft to firm slightly gravell sub-angular to sub-round of yellow brown fine sand sub-rounded, fine to coars	y sandy CLAY with occasion ed cobbles and occasional le Gravel is sub-angular to se.	al 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.50	В		Water strike(2) at 1.50m.	23.10 22.70 22.40	- 1.80 - 0.40 - 2.20 - 0.30 - 2.50	Firm slightly gravelly sand sub-angular to sub-round of yellow brown fine sand sub-rounded, fine to coars Firm to Stiff slightly gravel sub-angular to sub-round of yellow brown fine sand sub-rounded, fine to coars Complete at 2.50m	y CLAY with occasional ed cobbles and occasional le Gravel is sub-angular to se. ly sandy CLAY with occasion ed cobbles and occasional le Gravel is sub-angular to se.	$\frac{1}{1} \frac{\alpha}{\alpha} \frac{\beta}{\beta} \frac{\alpha}{\beta} \frac{\beta}{\beta} \frac{\beta}$
Plan .	· ·	•		•		Remarks		
						Moderate groundwater inflo Collapse from all sides of tr Trial pit terminated due to co Trial pit backfilled on comple	w trom 1.0m and 1.5m. ial pit. ollapse. etion.	
		•		•				
		•				Scale (approx)	Logged By MS	Figure No. 9225-11-19.TP06

S	Grou	nd In	vestigation: www.gii.ie	s Ireland	l Ltd	Site Hackettstown, Skerries		Trial Pit Number TP07	•
Machine: 8. Method : Tr	5T Excavator rial Pit	Dimens 1.0m x	ions 2.5m x 3.4m	Grour	nd Level (mOD) 25.04	Client DBFL		Job Number 9225-11-1	19
		Locatio	n (dGPS)	Dates	28/11/2019	Project Contractor		Sheet	
		72	5056.8 E 758992.8 N			Ground Investigations Irela	and	1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Record	s Leve (mOE	el Depth O) (m) (Thickness)	D	escription	Legend	Water
				24.	74 - 0.30)	Brown slightly sandy slight Soft to firm orange brown CLAY. Gravel is sub-angul Sand is fine to coarse.	tly gravelly TOPSOIL. slightly sandy slightly gravel ar to sub-rounded, fine to co	ly arse.	
0.50	В				 (1.20)				
			Water strike(1) at 1.5	0m. 23.	54 - 1.50 	Firm orange brown slightly Gravel is sub-angular to su is fine to coarse.	v sandy slightly gravelly CLA ub-rounded, fine to coarse.	Y. Sand	Z1
2.20	В			22.:	74 2.30	Stiff brown slightly sandy s occasional sub-angular to boulders. Gravel is sub-ar coarse. Sand is fine to coa	slightly gravelly CLAY with sub-rounded cobbles and gular to sub-rounded, fine t arse.		
3.00	В			22.0	04 3.00 (0.40) 64 3.40	Very stiff brown slightly sa occasional sub-angular to boulders. Gravel is sub-ar coarse.	ndy slightly gravelly CLAY w sub-rounded cobbles and gular to sub-rounded, fine t	o 0	
						Complete at 3.40m			
Plan					· · · ·	Remarks	1 5m to 2 6m from all faces		
						Minor trial pit side wall collar Trial pit terminated at 3.4m o	use to hard digging.	·	
		•							
· ·		•							
						Scale (approx) 1:25	Logged By MS	Figure No. 9225-11-19.TP07	17

Ground Investigations Ire				Ireland	Ltd	Site Hackettstown, Skerries		Trial P Numbe TPO	'it er 8	
Machine:8 Method:T	.5T Excavator rial Pit	Dimens 1.0m x	sions 2.5m x 4.0	m	Ground	d Level (mO 23.42) Client DBFL		Job Numbe 9225-11	er I-19
		Locatio	on (dGPS) 5105.6 E 7	59041.7 N	Dates	28/11/2019	Project Contractor Ground Investigations Irela	and	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Fie	eld Records	Level (mOD)	Depth (m) (Thicknes	;) D	escription	Legend	Water
					23.3	2 (0.10)TOPSOIL.	slightly gravelly silty CLAY G		•
						(0.35	is sub-angular to sub-roun to coarse.	ided, fine to coarse. Sand is	fine	
0.50	B1				22.9	7 0.4	Soft to firm orange brown CLAY with occasional sub Gravel is sub-angular to s	slightly sandy slightly gravel -angular to sub-rounded cob ub-rounded fine to coarse.	ly :0 :0 :0 :0 :0 :0 :0 :0 :0 :0 :0 :0 :0	• • •
1.00	B2					(1.05)			: • •
					21.9	2 - 1.5	Firm orange brown slightly with occasional sub-angul Gravel is sub-angular to s	v sandy slightly gravelly CLA ar to sub-rounded cobbles. ub-rounded fine to coarse.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
2.00	В3					(1.00				• • •
			Water stri	ke(1) at 2.50m	20.9	2 2.5	Firm to stiff orange brown occasional sub-angular to sub-angular to sub-rounde	sandy slightly gravelly CLA sub-rounded cobbles. Grav d fine to coarse.	/ with 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.∇1
					20.5	2 - 2.9	Stiff orange brown slightly occasional sub-angular to boulders. Gravel is sub-ar coarse. Sand is fine to coa	sandy slightly gravelly CLA sub-rounded cobbles and igular to sub-rounded, fine to arse.	Y with 0 2010	4 9 10 10 10 10 10 10 10 10 10 10 10 10 10
3.50	В4					(1.10)		រជ្ជាស្ថាស្តា ខ្លុំស្តាស្តាស្តា ទំនាំសំនាស់ទំនាំ	- - - - - - - - - - - - - - - - - - -
Plan .					. 19.4	2 <u> </u>	Remarks		<u> </u>	<u> </u>
							Trial pit backfilled on comple Minor groudnwater seepage Minor trial pit side wall colla	etion. e from 2.5m to 3.5m. ose from 2.5m to 3.5m.		
· ·		·	·		•					
							Scale (approx)	Logged By	Figure No.	
							1:25	MS	9225-11-19.TP	' 08

S	Grou	nd In	vestigations www.gii.ie	Ireland	Ltd	Site Hackettstown, Skerries		Trial I Numb TP(Pit ber 09
Machine:8 Method:T	.5T Excavator rial Pit	Dimens 1.0m x	ions 2.5m x 2.7m	Ground	Level (mOD) 21.94	Client DBFL		Job Numb 9225-1	ber 1-19
		Locatio	n (dGPS) 5089.1 E 759118.7 N	Dates 29	0/11/2019	Project Contractor Ground Investigations Irela	and	Shee 1/-	t 1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legen	р Water
0.50	В			21.74	(0.20) 0.20 	Brown slightly gravelly slig Soft brown sandy gravelly sub-angular to sub-rounde sub-angular to sub-rounde coarse.	htly sandy TOPSOIL. silty CLAY with occasional ed cobbles. Gravels are ed, fine to coarse. Sand is fi	ne to	<u> 2///2/ ها با ها با قا با قا با ه</u>
1.50	В		Water strike(1) at 1.80n	1.	(2.30)				ه <u>انتا ه انتا ه انتا ه انتا ها نتا ها نتا ها نتا ها نتا ها نتا</u> 12
				19.44	2.50 (0.20) 2.70	Stiff brown sandy gravelly sub-angular to sub-rounde sub-angular to sub-rounde coarse. Complete at 2.70m	silty CLAY with occasional ed cobbles. Gravels are ed, fine to coarse. Sand is fi	ne to	<u>o</u>
Plan					· ·	Remarks Groundwater encountered a	it 1.8m. High amount of wat	er causing	
				•		weakness and major sidewa Trial pit terminated due to un Trial pit backfilled on comple	all collapse. nstability. stion.	-	
					•••				
		•							
					· · ·	Scale (approx) 1:25	Logged By MMC	Figure No. 9225-11-19.T	P09

S	Grou	nd In	vesti ww	gatio /w.gii	ons Ire .ie	land	Ltd	Site Hackettstown, Skerries			Trial Pit Number TP10
Machine: 8. Method : Tr	5T Excavator rial Pit	Dimens	ions			Ground	Level (mOD 17.33) Client DBFL		9	Job Number 9225-11-19
		Locatio	n (dGPS) 5088.4 E) 759191.	9 N	Dates 29	/11/2019	Project Contractor Ground Investigations Irel	and		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	F	ield Rec	cords	Level (mOD)	Depth (m) (Thickness)	escription	I	Kater K
0.50	В					17.13	(0.20) 0.20 0.20 (0.80) 	TOPSOIL. MADE GROUND: Brown a angular to sub-rounded co Gravel is sub-angular to s is fine to coarse.	sandy gravelly CLAY with sc obbles. Fragments of red bri ub-rounded, fine to coarse.	me cks. Sand	
1.50	В					16.33	- 1.00 - 1.00 	Firm to stiff brown slightly some sub-rounded cobble boulders. Gravel is sub-ar coarse. Sand is fine to coa	sandy gravelly silty CLAY w s and occasional sub-round ngular to sub-rounded, fine t arse.	ith led	
2.50	В					15.23	2.10 2.10 	Stiff brown slightly sandy of sub-rounded cobbles and boulders. Gravel is sub-ar coarse. Sand is fine to coa	gravelly silty CLAY with som occasional sub-rounded ngular to sub-rounded, fine t arse.	e	
3.50	В		Water st	rike(1) a	t 3.00m.	14.13	- 3.20 - 3.20 - (0.80) - (0.80) 	Stiff dark brown/grey sligh some sub-rounded cobble sub-rounded, fine to coars	tly sandy gravelly CLAY witl s.Gravel is sub-angular to se.		40, 40, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5
Plan		•	•		•		•	Remarks	suptored at 3.00m		·
								Trial pit stable. Trial pit backfilled on comple	etion.		
			·	•							
			·					Scale (approx) 1:25	Logged By MMC	Figure 9225-1	No. 1-19.TP10

	Grou	und In	vestigations Ir www.gii.ie	eland	Ltd	Site Hackettstown, Skerries		Trial Pit Number TP11	
Machine: 8. Method : Tr	.5T Excavator rial Pit	Dimens	sions	Ground	Level (mOD) 19.24	Client DBFL		Job Number 9225-11-15	
		Locatio	on (dGPS) 25030.4 E 759208.9 N	Dates 29	9/11/2019	Project Contractor Ground Investigations Irel	and	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
0.50	В			19.14	(0.10) - (0.10) - 0.10 	TOPSOIL with rootlets. Soft brown sandy gravelly sub-angular cobbles. Grav sub-rounded fine to coarse	silty CLAY with some angul rels are sub-angular to e. Sand is fine to coarse.	ar to	Z1
1.50	В		Water strike(1) at 1.00m. Water strike(2) at 1.50m.	17.44	- 1.80	Firm brown sandy gravelly sub-angular cobbles. Grav sub-rounded fine to coarse	r silty CLAY with some angu rels are sub-angular to e. Sand is fine to coarse.	x 2 x 0 x 2	12
2.50	В			16.74	(0.70) - 2.50 	Stiff brown sandy gravelly sub-angular cobbles. Grav sub-rounded fine to coarse	silty CLAY with some angul rels are sub-angular to e. Sand is fine to coarse.	ar to	
				15.84	3.40	Complete at 3.40m		x o x	
Plan .						Remarks Groundwater seepage enco	untered at 1.00m and at 1.5	0m.	
						Trial pit unstable. Trial pit terminated due to ur Trial pit backfilled on comple	nstability. etion.		
					•••				
· ·	· ·		· · ·		· ·				
						Scale (approx) 1:25	Logged By MMC	Figure No. 9225-11-19.TP11	1

S	Grou	Ground Investigations Ire www.gii.ie			Ltd	Site Hackettstown, Skerries		Trial Pit Number TP12
Machine: 8. Method : Tr	.5T Excavator rial Pit	Dimens	ions	Ground	Level (mOD) 16.16	Client DBFL		Job Number 9225-11-19
		Locatio	n 4994.3 E 759248.2 N	Dates 27	7/11/2019	Project Contractor Ground Investigations Irela	and	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
				15.96	(0.20) - 0.20	Brown slightly sandy slight Soft brown sandy gravelly to sub-rounded, fine to coa	tly gravelly TOPSOIL. silty CLAY. Gravel is sub-an arse. Sand is fine to coarse.	gular
0.50	В			15.36	(0.60) 			× • • • × • • • • • • • • • • • • • • •
1.00	В			14.00	(0.70)	Loose greyish brown claye is sub-angular to sub-roun	ey slightly gravelly SAND.Gra ded, fine to coarse.	avel
Plan			Water strike(1) at 1.50m, rose to 1.30m in 5 mins.			Complete at 1.50m		
		•				Groundwater encountered a 5min.	t 1.5m. Water filled back to a	1.3m BGL after
		•		•	•••	Trial pit backfilled on comple	etion.	
		•		•	•••			
· ·	· ·	•						
					· · [Scale (approx)	Logged By	Figure No.
						1:25	MMC	9225-11-19.TP12

	Grou	ind Inv	vestigations www.gii.ie	Ireland	Ltd	Site Hackettstown, Skerries		Trial Pit Number TP13
Machine: 8. Method : T	.5T Excavator rial Pit	Dimension 1.0m x 2	ons 2.5m x 2.6m	Ground	Level (mOD) 19.43	Client DBFL		Job Number 9225-11-19
		Location 725	(dGPS) 035.4 E 759292.5 N	Dates 2	9/11/2019	Project Contractor Ground Investigations Irel	and	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
				19.28	(0.15) - (0.15) - 0.15 	MADE GROUND: Angular MADE GROUND: Brown s many cobbles. Rare fragm sub-angular to sub-rounde	fine to coarse gravel. sandy very gravelly CLAY wi nents of plastic present. Graved, fine to coarse.	th vel is
0.50	В				(0.65) 			
1.00	В			18.63		MADE GROUND: Brown a some sub-rounded cobble sub-rounded, fine to coars	s Gravel is sub-angular to e.) with
Plan					!	Remarks Trial pit stable.		
						Trial pit backfilled on comple No groundwater encountere	etion. d duriing excavation.	
		·			•••			
				·	· · ·	Scale (approx) 1:25	Logged By MMC	Figure No. 9225-11-19.TP13

Ground Investigations Ireland L www.gii.ie					Ltd	Site Hackettstown, Skerries		Trial Pit Number TPI14
Machine:8 Method:⊤	.5T Excavator rial Pit	Dimensio 2.1m x 0.	o ns 6m x 2.0m (L x W x	D) Ground	Level (mOD) 25.54) Client DBFL		Job Number 9225-11-19
		Location 7249	983.3 E 759070.1 N	Dates 27	7/11/2019	Project Contractor Ground Investigations Irela	and	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Record	s Level (mOD)	Depth (m) (Thickness))	escription	Legend Safe
				25.39	(0.15) - 0.15 - 0.15 	TOPSOIL. Soft brown sandy gravelly sub-angular to sub-rounde to sub-rounded, fine to coa	silty CLAY with occasional d cobbles. Gravel is sub-an arse. Sand is fine to coarse.	ngular (x, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0.50	В			24.54	(0.85)	Marking dama barrier		
4.50					 (1.00)	Medium dense brown grav occasional sub-angular to occasional sub-rounded b sub-rounded, fine to coars	relly slightly clayey SAND w sub-rounded cobbles and oulders. Gravel is sub-angu e. Sand is fine to coarse.	ith <u>(1000000000000000000000000000000000000</u>
1.50	B			23.54				
					(0.60)	Dense brown gravelly slig sub-angular to sub-rounde sub-rounded boulders. Gr sub-rounded, fine to coars	htly clayey SAND with occas ed cobbles and occasional avel is sub-angular to e. Sand is fine to coarse.	sional
				22.94	2.60	Brown slightly clayey grav sub-angular to sub-rounde sub-rounded boulders. Gr sub-rounded, fine to coars	elly SAND with occasional ed cobbles and occasional avel is sub-angular to e. Sand is fine to coarse.	00 00 00 00 00 00 00 00 00 00
					(1.40)			
				21 54	4 00			ő, «Ö
Plan .		•		· ·		Remarks		
						No groundwater encountere Trial pit stable. Soakaway test carried out ir Trial pit backfilled on comple	d during excavation. n pit at 2.00m BGL. ttion.	
· ·					•••			
· ·	· ·			 	 			
		·			••••	Scale (approx) 1:25	Logged By MMC	Figure No. 9225-11-19.TPI14

Ground Investigations In www.gii.ie				ns Irel ^{ie}	eland Ltd		Site Hackettstown, Skerries		1	Trial Pit Number TPI15
Machine:8 Method :⊤	.5T Excavator rial Pit	Dimens 2.5m x	ions 0.5m x 2.0m (L x W	√ x D)	Ground	Level (mOD) 23.15	DBFL) 92	Job Number 225-11-19
		Location 72	n 5099.2 E 759083.8	N	Dates 27	/11/2019	Project Contractor Ground Investigations Irela	and	ę	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	ords	Level (mOD)	Depth (m) (Thickness)	D	escription	Le	Kater Nonege
0.50	в				23.00	(0.15) 0.15 	TOPSOIL. Soft brown sandy gravelly angular to sub-angular col sub-rounded, fine to coars	/silty CLAY with occasional bbles.Gravel is sub-angular e. Sand is fine to coarse.	to ×	
									<u>: 한 정도한 정도한 정도한 정도한</u>	× 0 × 1 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0
1.50	В				21.35 21.05	- 1.80 - (0.30) - 2.10	Firm to stiff brown sandy g angular to sub-angular col sub-rounded, fine to coars	pravelly/silty CLAY with occa bbles.Gravel is sub-angular ie. Sand is fine to coarse.	isional to	<u> </u>
2.50	В					 (0.90) 	angular to sub-angular co sub-rounded, fine to coars	shiy oclar will is cusangular obles. Gravel is sub-angular e. Sand is fine to coarse.	r to	× · · · · · · · · · · · · · · · · · · ·
					20.15	- 3.00 	Complete at 3.00m		<u> </u>	<u></u> ×°
Plan			· ·	-		· ·	Remarks			
				-			Trial pit terminated due to ha	n pit at 2.0mBGL ard digging at 3m.		
						•				
· ·	· ·		· ·		• •					
		·		. .			Scale (approx) 1:25	Logged By MMC	Figure N 9225-11-	lo. -19.TPI15

Ground Investigations Ireland					Ireland	Ltd	Site Hackettstown, Skerries	Trial Pit Number TPI16	
Machine: 8 Method : T	.5T Excavator rial Pit	Dimens 2.2m x	sions 0.6m x 2.00	0m (L x W x D)) Ground	Level (mOD) 24.06	Client DBFL		Job Number 9225-11-19
		Locatio	on (dGPS) 24961.1 E 7	59157.1 N	Dates 27	7/11/2019	Project Contractor Ground Investigations Irela	and	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Fie	eld Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
0.50	В				23.91	(0.15) 0.15 0.15 0.15 0.15 0.15 0.15	TOPSOIL. Soft brown sandy gravelly sub-angular to sub-rounde to sub-rounded, fine to coa	silty CLAY with occasional ed cobbles. Gravel is sub-ar arse. Sand is fine to coarse.	ngular
					23.06	- - - - - - - - - - - - - - - - - - -	Brown slightly clayey grav sub-angular to sub-rounde to sub-rounded, fine to coa	elly SAND with occasional d cobbles. Gravel is sub-ar arse. Sand is fine to coarse.	* <u>····</u> × <u>···</u> × <u>···</u> × × × × × × × × × × × × ×
1.50	В				21.96	(1.10)			
2.50	В				21.90	 	Brown very gravelly slight sub-rounded cobbles.	y clayey SAND with many	
3.50	В		Water stril	ke(1) at 3.70n	1. 20.06	4 00			<u>, , , , , , , , , , , , , , , , , , , </u>
Plan							Remarks		I
							Moderate groundwater enco Trial Pit Stable. Soakaway test carried out ir Trial Pit backfilled on comple	puntered at 3.7m, moderate n pit at 2.0m etion.	tiow.
				· ·	•	•••			
 	· ·			· ·		 			
							Scale (approx)	Logged By	Figure No.
							1:25	MMC	9225-11-19.TPI16

S	Grou	nd In	vestigations li www.gii.ie	reland	Ltd	Site Hackettstown, Skerries		Trial Pit Number TPI17			
Machine: 8. Method : Tr	.5T Excavator rial Pit	Dimens	ions	Ground	Level (mOD) 15.13	Client DBFL		Job Number 9225-11-19			
		Locatio	n (dGPS) 5145 E 759187.4 N	Dates 27	7/11/2019	Project Contractor Ground Investigations Irela	and	Sheet 1/1			
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe			
0.50	В			14.98	(0.15) 0.15 (0.55)	TOPSOIL MADE GROUND: Brown s Rare fragments of bricks/o	sandy slightly gravelly silty c slay pipe.	lay.			
				14.43	0.70 (1.00)	Soft to firm grey mottled o CLAY. Gravel is sub-angul	range sandy slightly gravelly ar to sub-rounded, fine to co	/ silty barse.			
2.00	В		water strike(1) at 1.40m.	13.43	- 1.70 - (0.40)	Brownish grey clayey sand sub-angular to sub-rounde	dy GRAVEL. Gravel is d.				
Plan				13.03		Complete at 2.10m					
						Trial Pit terminated due to co Pit filling with water - unsuita	ollapse in gravel with preser able for soakaway.	nce of water.			
		•		•	•••	GIOUNUWALEI ENCOUNLERED 2	n 1.40m. Fast 110W.				
					•••						
· · ·	· ·	•		•	· ·						
						Scale (approx) 1:25	Logged By MMC	Figure No. 9225-11-19.TPI17			
	Grou	ind In	vestig www	ations Ir v.gii.ie	Site Hackettstown, Skerries			Trial Pit Number TPI17A			
--	---------------------------------------	--	----------------------------	----------------------------------	--	-----------------------------	---	---	--------------------------	----------------------------	-------------
Machine : 8T 360 Method : Trial Pit		Dimens 2.2m x	sions 0.5m x 1.70	Im (L x W x D)	Ground	Level (mOD) 15.74	Client DBFL		9	Job Number 9225-11-1	9
		Location (dGPS) 725147.5 E 759174.8 N			Dates 27/11/2019		Project Contractor Ground Investigations Ireland			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Fie	ld Records	Level (mOD)	Depth (m) (Thickness)	D	escription	I	Legend	water
Plan . 	· · · · · · · · · · · · · · · · · · ·		Water strik Water strik	e(1) at 1.20m. e(2) at 1.70m.	(IIICC) 15.59 15.14 14.04 	(Thičkňess)	TOPSOIL. MADE GROUND: Brown s Rare fragments of rope ar Soft brown sandy slightly occasional angular to sub-sub-angular to sub-sub-angular to sub-rounder coarse. Complete at 1.70m Complete at 1.70m Remarks Trial pit stable. Groundwater seepage encoom Moderate groundwater flow Re dig of Trial Pit TP117. Soakaway test carried out in Trial pit backfilled on complete at the complete of the complete	untered at 1.20m. encountered at 1.70m BGL stion.	iLAY.		<u>M</u> 22
			·								
			·		· ·	· · · ·	Scale (approx) 1:25	Logged By MMC	Figure 9225-11	No. -19.TPI17	

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

S	Grou	und In	vestigatio www.gii	Site Hackettstown, Skerries			Trial Pit Number TPI18				
Machine:8 Method:T	.5T Excavator rial Pit	Dimens 2.4m x	Dimensions 2.4m x 0.5m x 2.00m (L x W x D)			_evel (mOD) 6.10	Client DBFL		Job Numbe 9225-11-	Job Number 9225-11-19	
		Locatio	Location (dGPS) 724942.5 E 759265.5 N			11/2019	Project Contractor Ground Investigations Ireland		Sheet 1/1	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Rec	cords (m	evel nOD)	Depth (m) (Thickness)	D	escription	Legend	Water	
0.50	В				15.90	(0.20) - 0.20 - 0.20 - (0.50)	TOPSOIL. Soft brown sandy gravelly sub-rounded, fine to coars	CLAY. Gravel is sub-angula e.	r to		
1.50	в		Water strike(1) a	t 1.00m.	15.40	0.70 (1.30)	Soft to firm grey matt brow occasional sub-angular to sub-angular to sub-rounde coarse.	n sandy silty CLAY with sub-rounded cobbles. Grav d, fine to coarse. Sand is fir	e lis x	∑1	
					14.10	2.00	Complete at 2.00m				
					-	- - - -					
Plan				· ·		. •	Remarks Groundwater seepage enco	untered at 1.00m.			
							Trial pit stable. Soakway test carried out in Trial pit backfilled on comple	pit at 2.0 mBGL tion.			
					•						
· ·		•		• •	•	·					
		·									
					•	s	scale (approx) 1:25	Logged By MMC	Figure No. 9225-11-19.TPI	118	

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

Hackettstown, Skerries, Co. Dublin – Trial Pit Photos

TP10

TP10

TP13

TPI14

TPI14

TPI15

TPI15

TPI16

TPI17

APPENDIX 3 – Soakaway Results

Soakaway Test Report

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

TPI14

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.10m X 0.60m X 2.00m (L x W x D)

Date	Time	Water level (m bgl)
27/11/2019	0	-1.000
27/11/2019	5	-1.000
27/11/2019	125	-1.030
27/11/2019	260	-1.100
27/11/2019	300	-1.100

Start depth	Depth of Pit	Diff	75% full	25%full
1.00	2.000	1.000	1.25	1.75

Soakaway Test Report

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

TPI15

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.50m X 0.50m X2.00m (L x W x D)

Date	Time	Water level (m bgl)
27/11/2019	0	-1.050
27/11/2019	5	-1.050
27/11/2019	155	-1.100
27/11/2019	275	-1.100
27/11/2019	335	-1.100

Start depth	Depth of Pit	Diff	75% full	25%full
1.05	2.000	0.950	1.2875	1.7625

Ground Investigations Ireland

TPI16

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.20m X 0.60m X 2.00m (L x W x D)

Date	Time	Water level (m bgl)					
27/11/2019	0	-1.000					
27/11/2019	5	-1.100					
27/11/2019	10	-1.150					
27/11/2019	90	-1.200					
27/11/2019	240	-1.400					
27/11/2019	300	-1.550					
27/11/2019	360	-1.650					

Start depth 1.00	Depth of Pit 2.000	Diff 1.000		75% full 1.25	25%full 1.75
Length of pit (m) 2.200) Width of pit (m) 0.600			75-25Ht (m) 0.500	Vp75-25 (m3) 0.66
Tp75-25 (from graph) (s)		19500		50% Eff Depth 0.500	ap50 (m2) 4.12
f =	8.215E-06	m/s			

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

 Tel:
 01 601 5175 / 5176

 Email:
 info@gii.ie

 Web:
 www.gii.ie

Soakaway Test Report

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

TPI17A

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.20m X 0.5m X 1.70m (L x W x D)

Date	Time	Water level (m bgl)
27/11/2019	0	-0.700
27/11/2019	5	-0.700
27/11/2019	50	-0.700
27/11/2019	215	-0.650
27/11/2019	275	-0.650

Start depth	Depth of Pit	Diff	75% full	25%full
0.70	1.700	1.000	0.95	1.45

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

TPI18

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.40m X 0.50m X 2.00m (L x W x D)

Date	Time	Water level (m bgl)
27/11/2019	0	-1.000
27/11/2019	5	-1.030
27/11/2019	10	-1.050
27/11/2019	48	-0.750
27/11/2019	223	-0.650
27/11/2019	283	-0.650

Start depth	Depth of Pit	Diff	75% full	25%full
1.00	2.000	1.000	1.25	1.75

APPENDIX 4 – Dynamic Probe Records

C	Gro	und Investigations	Ireland	Ltd	Site Hackettstown, Skerries		
Method Dynamic F	Probe	WWW.GII.IE	Cone Dimensions Ground Level (mOD) 18.96		Client DBFL	Job Number 9225-11-1	
		Location (dGPS) 724926.1 E 759225.3 N	Dates 21/0	02/2020	Engineer DBFL	Sheet 1/2	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	Blows for Depth Increment		
0.00-0.10	4		18.96	0.00		27 30	
0.10-0.20	3			-			
0.20-0.30 0.30-0.40	4 3						
0.40-0.50	3		18.46	 			
0.60-0.70	2			-			
0.70-0.80 0.80-0.90	2 2			-			
0.90-1.00	3		17.06	- 			
1.10-1.20	0			- 			
1.20-1.30 1.30-1.40	4 4						
1.40-1.50	6		47.40	-			
1.60-1.70	8		17.40	- 1.50 			
1.70-1.80	8			-			
1.90-2.00	4			- - -			
2.00-2.10	4		16.96	2.00 			
2.20-2.30	4			-			
2.30-2.40	5			-			
2.50-2.60	5		16.46	— 2.50 			
2.70-2.80	5		-	-			
2.80-2.90	5			-			
3.00-3.10	7		15.96	3.00			
3.20-3.30	8		-	-			
3.30-3.40	6			 			
3.50-3.60	10		15.46	3.50			
3.60-3.70 3.70-3.80	11			-			
3.80-3.90	13						
4.00-4.10	13		14.96	4.00			
4.10-4.20	13						
4.30-4.40	12			-			
4.40-4.50 4.50-4.60	11 14		14.46	4.50			
4.60-4.70	15			-			
4.70-4.80 4.80-4.90	20			-		+	
4.90-5.00	21		13.96	5.00		\perp	
Remarks					Scale (approx	ເ) Logged By	
					1:25 Figure	No.	

Ground Investigations Ireland Ltd		Site Hackettstown, Skerries					Probe Number		r					
Method Dynamic P	robe	WWW.GII.IC	Ground L	Ground Level (mOD) Client 18.96 DBFL								Jo	b mber	r
		Location (dGPS) 724926.1 E 759225.3 N	Dates 21/0	Dates 21/02/2020		Engineer DBFL						922 Sh	Sheet 2/2	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	3 6	Blows 9	for Dep 12 1	oth Inc	rement 18 2	1 24	27	30	
5.00-5.10	24		13.96	5.00								<u> </u>	+	
			13.46	 5.50										_
													_	
			12.96	6.00									_	_
			12.46	- 6.50										
			11.96	- - - - - 7.00									_	
			11.46	- - 7.50										_
			10.96	- 8.00										
														_
			10.46	— 8.50 — —										
			9.96	9.00										
			9.46											_
				· 										_
Remarks			8.96	10.00							Scale (appro	e Lo (x) By	gged	— I
											1:25 Figur	e No.		
											922!	5-11-1 ⁻	9 DPC)1

	Gro	und Investigations	s Ireland	Ltd	Site Hacke	ttstown,	Skerri	es						Num	iber
Method Dynamic F	Probe	Cone Dimensions	Ground L	-evel (mOD) 16.27	Client DBFL									Job Num 9225-	ber
		Location	Dates	12/2020	Enginee	er								Shee 1	∍t /1
Depth	Blows for	724992.0 L 739240.0 N	Level	Depth				Blows	for De	oth Inc	remen	t			
(ṁ)	Depth Increment	t Field Records	(mOD)	(ṁ)	0 3	3 6	; (9 .	12	15	18	21 2	24 2	27	30
0.00-0.10	2		16.27	0.00											
0.20-0.30	3			-											-
0.30-0.40	4		-	-											_
0.50-0.60	3		15.77	0.50											
0.60-0.70	5			- -											
0.80-0.90	5			 - 											+
0.90-1.00 1.00-1.10	3 4		15.27	1.00											+
1.10-1.20	3														\downarrow
1.20-1.30 1.30-1.40	5 4			- 											
1.40-1.50 1.50-1.60	4 9		14.77	 											
1.60-1.70	15			-											+
1.70-1.80 1.80-1.90	14 9														+
1.90-2.00	7		14 27	2 00											
2.10-2.20	10			-											
2.20-2.30	16			-											+
2.40-2.50	8			- -											+
2.50-2.60	6		13.77	— 2.50 —											\downarrow
2.70-2.80	6			- 											
2.80-2.90	6			-											
3.00-3.10	7		13.27	3.00											+
3.10-3.20	9			-											+
3.30-3.40	11														
3.40-3.50 3.50-3.60	14 13		12.77	3.50											
3.60-3.70	13			-											+
3.70-3.80 3.80-3.90	12 12			- -											+
3.90-4.00 4.00-4.10	12 10		12.27	4.00											\perp
4.10-4.20	14			-											
4.20-4.30 4.30-4.32	30 30														30
			11 77	- - - <u>4</u> 50											
															_
				-											
				- - -											
Remarks			11.27	5.00									Scale	Log	⊥ ⊒ed
												(i	approx)	By	,
													1:25		
													igure	NO.	

	Grou	ind Investigations	Ireland	l td	Site									Prob Num	e ber
			Hacke	ttstown,	Skerr	ries						DP	03		
Method	3834* -	Cone Dimensions	Ground L	evel (mOD)	Client									Job	
Dynamic F	Probe			18.03	DBFL									9225-	ber 11-19
		Location (dGPS)	Dates		Engine	ər								Shee	€t
		725083.9 E 759186.9 N	21/0	2/2020	DBFL									1/	/1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)				Blows	for De	pth Inc	remen	t	04	72	20
0.00-0.10	2		18.03	0.00			•	9							+
0.10-0.20	4														
0.20-0.30 0.30-0.40	4 5			- -											
0.40-0.50	2		17.53	- 0.50											+
0.60-0.70	4			-										<u> </u>	+
0.70-0.80 0.80-0.90	3 4			 - 											
0.90-1.00	5		17.03	 											
1.10-1.20	7		17.00												
1.20-1.30	6			 											+
1.40-1.50	6		16 52	- 											+
1.60-1.70	8		10.55	- 1.50											+
1.70-1.80 1.80-1.90	7 6			-											
1.90-2.00	6		16.02	- 2.00											
2.10-2.10	9		10.03												
2.20-2.30	16			-											+
2.40-2.50	10		45.50	-											+
2.50-2.60	11		15.53	— 2.50 —										<u> </u>	+
2.70-2.80	14			-											
2.80-2.90	12			-											
3.00-3.10	14		15.03	3.00											+
3.10-3.20	16			- -										<u> </u>	+
3.30-3.40	15									Ľ_					
3.50-3.60	18		14.53	3.50											
3.60-3.70	19			-											T
3.80-3.90	16			- -											+
3.90-4.00 4.00-4.10	18 17		14.03	4.00										<u> </u>	+
4.10-4.20	22			-											
4.20-4.30 4.30-4.40	23 23			- -											
			13.53	4.50											+
				- 											+
				-										<u> </u>	+
			13 03	- 5.00											
Remarks	1			0.00									Scale	Loge	jed
												C	аµргох)	Jy	
												ŀ	1:25 Figure	No.	
													9225-1	1-19 Г	JP03

	Gro	und Investigations	Ireland	l td	Site							Prob Num	er
		www.gii.ie	nolaria		Hacke	ttstown, Sk	erries					DP	04
Method		Cone Dimensions	Ground L	evel (mOD)	Client							Job	her
Dynamic F	Probe		2	22.62	DBFL						!	9225-1	1-19
		Location (dGPS)	Dates		Engine	er						Shee	t
		724917.1 E 759165.5 N	22/0	2/2020	DBFL							1/	1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	5 10	Blows 15 2	for Dept 20 25	h Increme 30	nt 35 4	0 4	5	50
0.00-0.10	3		22.62	0.00									+
0.10-0.20	3			-									+
0.20-0.30	3			-									
0.40-0.50 0.50-0.60	3 3		22.12	0.50									
0.60-0.70	4			-									-
0.70-0.80 0.80-0.90	3 3												+
0.90-1.00 1.00-1.10	4 4		21.62	 1.00									_
1.10-1.20	5			- 									
1.20-1.30 1.30-1.40	5 4			-									
1.40-1.50	5		21 12	 									+
1.60-1.70	4		21.12	- -									+
1.70-1.80	4			-									
1.90-2.00	5			- 									
2.00-2.10	5		20.62	— 2.00 —									
2.20-2.30	5			• •									+
2.30-2.40	5		-	- 									+
2.50-2.60	5		20.12	— 2.50 —									
2.60-2.70	5												
2.80-2.90	6			 - 									-
3.00-3.10	7		19.62	3.00									+
3.10-3.20	8			-									_
3.30-3.40	8			- 									
3.40-3.50 3.50-3.60	8 9		19.12	3.50									
3.60-3.70	12												+
3.70-3.80 3.80-3.90	17 20												+
3.90-3.96	50		18.62	4.00									50
				• •									
				-									
			18.12	4.50									+
													+
				-									\perp
			17.62	- 									
Remarks	1	I	17.02					I		s	cale	Logg	ed.
										(a	ipprox)	Бу	
										F	1:25	No.	
											9225-1	ם 1 ₋ 10	

C	Gro	und Investigations	s Ireland Ltd	Site	Probe Number
		www.gii.ie		Hackettstown, Skernes	DP05
Method Dynamic F	Probe	Cone Dimensions	Ground Level (mC 24.06	DD) Client DBFL	Job Number 9225-11-19
		Location (dGPS) 724968.5 E 759167.1 N	Dates 22/02/2020	Engineer DBFL	Sheet 1/1
Depth (m)	Blows for Depth Increment	Field Records	Level Depth (mOD) (m)	Blows for Depth Increment	45 50
0.00-0.10	1		24.06 0.00		45 50
0.10-0.20	2				
0.20-0.30 0.30-0.40	4 4				
0.40-0.50	5		23 56 0 50		
0.60-0.70	4				
0.70-0.80	3				
0.90-0.94	50				50
			23.06 1.00		
					+
			22.56 1.50		
			22.06 2.00		
			21.56 2.50		
					+
			-		
			20.56 3.50		
			20.06 4.00		
			19.56 4.50		
			19.06 5.00		
Remarks	1	1		Scale (approx	Logged () By
				1.25	
				Figure	• No.
				9225	-11-19 DP05

	Gro	und Investigations	Ireland	Ltd	Site						Pr Ni	obe umbe	۶r
		www.gii.ie	, noiana	LIG	Hacke	ettstown, Sk	erries				D	P05	Α
Method Dynamic F	Probe	Cone Dimensions	Ground L	.evel (mOD) 24.06	Client DBFL						Ο 922	0 b umbe 25-11-	• r -19
		Location 724968.5 E 759167.1 N	Dates 22/0 22/0	2/2020- 3/2020	Engine DBFL	er					Sh	1/1	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	_	4 0	Blows fo	or Depth In	crement				
0.00-0.10	2		24.06	0.00		4 8		20	24 20	8 32	30	40)
0.10-0.20	2			-									
0.20-0.30 0.30-0.40	4			-									
0.40-0.50	4		22.56	 									
0.50-0.60	3		23.50								_		
0.70-0.80	3			-									
0.80-0.90	12			- 									
1.00-1.10	27		23.06	1.00									
1.20-1.30	20										+	+	—
1.30-1.40	32			-							_	_	
			22.56	- - 1.50									
				-									_
			-	-								-	
			22.06	2.00							_		
				-									
				-									
			21.56	 2 50									—
				-									
				-									
			21.06	3.00 								-	
				- 									
				 - 									
			20.56	3.50									
				-									
												-	
			20.06	4.00			_				_		
				-									
			19.56	4.50									
			-	-									_
				-								\square	
			19.06	- - 5.00									
Remarks		1	19.00	0.00						Scale	÷ Lo)ggeo	
										(appro	עם ואי	,	
										1:25	re No		
										0225	11 10	מסס ב)E A

	Gro	und Investigations	s Ireland	Ltd	Site								Prob Num	e ber
		www.gii.ie			Hacke	ettstown	, Skerr	es					DP	06
Method Dynamic F	Probe	Cone Dimensions	Ground I	_evel (mOD) 23.71	Client DBFL								Job Num 9225-	ber 11-19
		Location (dGPS)	Dates		Engine	er							Shee	ŧ
		725020.9 E 759135.6 N	22/0	02/2020	DBFL								1/	'1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)		г 4	0	Blows f	or Depth	Incremen	it	0	4 -	50
0.00-0.10	3		23.71	0.00		5 1			25	30	35 4	.0 2	6	50
0.10-0.20	3			-										
0.20-0.30 0.30-0.40	3 2			-										
0.40-0.50 0.50-0.60	2 4		23.21	 										1
0.60-0.70	5		-	- 										+
0.70-0.80 0.80-0.90	4 4			-										+
0.90-1.00	3 4		22 71	 										
1.10-1.20	3			-										
1.20-1.30 1.30-1.40	3 5		-											
1.40-1.50	7		22.21	- - - 1.50										+
1.60-1.70	5			-										+
1.70-1.80 1.80-1.90	17 13		-	-									<u> </u>	_
1.90-2.00	13		01.71	- 2.00										
2.10-2.10	9		21.71											
2.20-2.30	8		-	-										+
2.40-2.50	12			-									<u> </u>	+
2.50-2.60	14		21.21	— 2.50 										+
2.70-2.80	16			- 										
2.90-3.00	15			-										
3.00-3.10 3 10-3 14	32 50		20.71	3.00 										
0.10 0.11			-	-										- 50
				-									<u> </u>	_
			20.21	3.50										
			-	-										
				-										
			19.71	4.00 										+
			-	-									<u> </u>	+
			19.21	4.50										
				-										
				- -										+
			18.71	5.00									<u> </u>	<u> </u>
Remarks											S (a	cale pprox)	Logg By	jed
												1:25		
											F	igure l	No.	

C	Gro	und Investigations	s Ireland	Ltd	Site								Prob Num	e ber
		www.gii.ie			Hacke	ettstown,	Skerries						DP	07
Method Dynamic F	Probe	Cone Dimensions	Ground L	.evel (mOD) 24.84	Client DBFL							5	Job Num! 9225-1	ber 11-19
		Location (dGPS)	Dates		Engine	er							Shee	t
		724974.9 E 759121.3 N	22/0	2/2020	DBFL								1/	1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	5 10	B lo 15	ows for De	epth Inc 25	crement	: 35 40	0 4	45	50
0.00-0.10	2		24.84	0.00			-		+	+				ŧ
0.10-0.20	2			-										\vdash
0.20-0.30	4													
0.40-0.50 0.50-0.60	3 4		24.34	0.50										
0.60-0.70	3													\top
0.70-0.80 0.80-0.90	3			• 										+
0.90-1.00 1.00-1.10	2 3		23.84	1.00						-				+
1.10-1.20	6			 									ļ	\perp
1.20-1.30 1.30-1.40	3 5			- -										
1.40-1.50 1.50-1.60	8 9		23.34	1.50										
1.60-1.70	15													+
1.70-1.80 1.80-1.90	19 22													-
1.90-2.00 2.00-2.04	22 50		22.84	2.00										50
				- - -										Τ
			22.34											\uparrow
														+
				 										_
			21.84	- 3.00										
				 - 										
			21.34	- - - 3.50										+
				 										_
			20.84	- - - 100										
			20.04											
														+
			20.24											-
			20.34	4.50 										+
				-										
			10.94	- 										
Remarks			19.04	3.00		1 1					S	cale	Logg	jed
											(aj	pprox)	Бу	
											1 Fi	i:25 igure l	No.	
												-	1_10 F	

		www.gii.ie			Hacke	ettstown, S	kerries						DP	08
Method Dynamic F	Probe	Cone Dimensions	Ground L	.evel (mOD) 23.78	Client DBFL								Job Num 9225-	1 ber
		Location (dGPS)	Dates		Engine	er							Shee	ət
		724913.1 E 759112.2 N	22/0	2/2020	DBFL								1	/1
Depth	Blows for	Field Records	Level (mOD)	Depth			Blow	s for De	pth Inc	rement				
0.00-0.10	3		23.78	0_00	0 ·	4 8	12	16 2	20 2	24 2	8 3	32 3	36	40
0.10-0.20	3													
0.20-0.30	2			-										T
0.40-0.50	2			-										+
0.50-0.60	4		23.28	0.50				_						+
0.70-0.80	4													
0.80-0.90	4			- -										
1.00-1.10	3		22.78	1.00 										+
1.20-1.30	3			-										+
1.30-1.40	2			-										+
1.50-1.60	2		22.28	- - 1.50										
1.60-1.70	3			-										
1.80-1.90	3			-										+
1.90-2.00 2.00-2.10	03		21.78	2.00										+
2.10-2.20	2			-										\perp
2.20-2.30 2.30-2.40	3			- -										
2.40-2.50 2.50-2.60	3 2		21.28	2.50										
2.60-2.70	3			-										+
2.70-2.80 2.80-2.90	3 3			- -										+
2.90-3.00 3.00-3.10	2 4		20.78	3.00										\perp
3.10-3.20	5			- -										
3.20-3.30 3.30-3.40	4 3			-										+
3.40-3.50	5		20.28	- - - 3 50										+
3.60-3.70	7		20.20	- 0.00 										+
3.70-3.80	5													
3.90-4.00	7			-										
4.00-4.10 4.10-4.20	8		19.78	4.00 										1
4.20-4.30	10			-										+
4.40-4.50	11			-			_							+
4.50-4.60	28		19.28	4.50										
4.70-4.80	31			- -										
														+
			18.78	5.00										<u>+</u>
Remarks											(a	approx)	By	jed
												1:25		
											F	igure	No.	

	Gro	und Investigations	Ireland	l td	Site							Prob Num)e Iber
		www.gii.ie	neiana		Hacke	ttstown, S	kerries					DP	09
Method		Cone Dimensions	Ground L	evel (mOD)	Client							Job	
Dynamic P	robe			23.86	DBFL							9225-	ber 11-19
		Location (dGPS)	Dates		Enginee	ər						Shee	ət
		724924.3 E 759045.5 N	22/0	2/2020	DBFL							1/	/1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)			Blows	s for Dep	th Inc	rement			
0.00-0.10	2		23.86	- 0.00		4 8	12	16 2	0 2	24 28	32	36	40
0.10-0.20	3			-									
0.20-0.30 0.30-0.40	3			-									
0.40-0.50	4			-									+
0.50-0.60	5		23.36	0.50									+
0.70-0.80	4			-									
0.80-0.90	4												
1.00-1.10	4		22.86	1.00									+
1.20-1.30	4											+	+
1.30-1.40	3												_
1.50-1.60	3		22.36	— 1.50									
1.60-1.70	3												T
1.80-1.90	4			- 									+
1.90-2.00 2.00-2.10	4 5		21.86	2.00									+
2.10-2.20	5			- -									
2.20-2.30 2.30-2.40	6 6												
2.40-2.50	6		21.36	- - 2.50									+
2.60-2.70	12											<u> </u>	+
2.70-2.80 2.80-2.90	12 14			-									_
2.90-3.00	21			- 					1				
3.10-3.10	33		20.86	3.00 					_				
				- 									+
				-									+
			20.36	3.50									
				-								-	+
			19.86	4.00									+
				-									_
				- -									
			19.36	4.50									
				• •									+
				-									+
			18.86	5.00									
Remarks					- 1						Scale		ged
											(appi 0x	/	
											1:25 Figure	<u> </u> No.	
											9225-	11-19 F	0P09

C	Gro	und Investigations	Ireland Li	td	Site		Char	iee						Prob Num	lber
		www.gii.ie			Наске	ettstown,	, Skeri	les						DP	10
Method Dynamic F	Probe	Cone Dimensions	Ground Leve 24.1	9 9	Client DBFL									Job Num 9225-	i ber 11-19
		Location (dGPS)	Dates		Engine	er								Shee	ət
		724934.8 E 759012.3 N	22/02/20	020	DBFL									1/	/1
Depth (m)	Blows for Depth Increment	Field Records	Level D (mOD)	Depth (m)	0	36	6	Blows	for De	pth Inc 15	rement	21 2	24 2	27	30
0.00-0.10	2		24.19	0.00										+	ŧ
0.10-0.20	7		-												+
0.20-0.30	4		-												
0.40-0.50 0.50-0.60	4 3		23.69	0.50											
0.60-0.70	4		-												+
0.70-0.80 0.80-0.90	4 4		-												+
0.90-1.00 1.00-1.10	3 3		23.19	1.00											+
1.10-1.20	5														
1.20-1.30 1.30-1.40	4 8														
1.40-1.50 1.50-1.60	4		22.69	1.50										-	+
1.60-1.70	4		-											<u> </u>	—
1.70-1.80 1.80-1.90	6 9														+
1.90-2.00	7		22.10	2.00											
2.10-2.20	8		-	2.00				-							
2.20-2.30	8		-												+
2.40-2.50	7			0.50			_								+
2.50-2.60	4		21.69	2.50			_								+
2.70-2.80	9		-												
2.90-3.00	9														
3.00-3.10	10		21.19	3.00											\top
3.20-3.30	26														+
3.40-3.50	10		-												+
3.50-3.60	24		20.69	3.50											
3.70-3.80	23														
			-												\top
			20.19	4.00											+
			-												
			-												
			19.69	4.50											
			-												T
			-												+
			19.19	5.00										<u> </u>	_
Remarks												(Scale approx)	Logo By	jed
													1:25		
													Figure	No.	
													9225-1	11-19.[DP10

2	Gro	und Investigations	lreland	Ltd	Site						Pro Nu	be mber
		www.gii.ie			Наске	ettstown, Ske	rries				D	P11
Method Dynamic F	Probe	Cone Dimensions	Ground L	_evel (mOD) 24.85	Client DBFL						Jol Nu 922؛	o mber 5-11-1
		Location (dGPS)	Dates		Engine	er					Sh	eet
		724995.3 E 758992.6 N	22/0	2/2020	DBFL							1/2
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	5 10	Blows	for Depth	n Increment 30 3	35 40	45	50
0.00-0.10	5		24.85	0.00							+	=
0.10-0.20	3			-							_	
0.20-0.30 0.30-0.40	4 3			-								
0.40-0.50 0.50-0.60	3 5		24.35	 0.50								
0.60-0.70	5			-								
0.70-0.80 0.80-0.90	4 6			-								_
0.90-1.00	4		23.85	 								
1.10-1.20	4			-								
1.20-1.30 1.30-1.40	3 4			 - 								
1.40-1.50	3		22.35	- 								
1.60-1.70	5		20.00	-							_	
1.70-1.80	4			-								
1.90-2.00	5			-								
2.00-2.10	4		22.85	2.00 								
2.20-2.30	7			-								
2.30-2.40	6			- 								
2.50-2.60	8		22.35	— 2.50 —								
2.70-2.80	11			- -								
2.80-2.90	12						1					
3.00-3.10	12		21.85	3.00			-					
3.10-3.20	9			-								
3.30-3.40	17			 - 								
3.50-3.60	11		21.35	- - 3.50								
3.60-3.70	8											
3.80-3.90	8			-								
3.90-4.00 4.00-4.10	8		20.85	4.00			_				_	_
4.10-4.20	11											
4.20-4.30 4.30-4.40	10 11			- -								
4.40-4.50 4.50-4.60	10 14		20.35	4.50							+	-
4.60-4.70	11			- 			┛┼──┤				+	
4.70-4.80 4.80-4.90	9 9											
4.90-5.00	9		19.85	 5.00								
Remarks		1								Scale (appro	Lo (x) By	gged
										1.25		
										Figur	e No.	
										9224	5-11-10	11סח ג

	Grou	und Investigations	Ireland	l td	Site							Pro Nur	be nber
		www.gii.ie	nolaria	Lu	Hacke	ettstown, Sk	erries					DI	> 11
Method		Cone Dimensions	Ground L	evel (mOD)	Client							Job	nhor
Dynamic P	robe			24.85	DBFL							9225	-11-19
		Location (dGPS)	Dates		Engine	er						She	et
		724995.3 E 758992.6 N	22/0	2/2020	DBFL							1	2/2
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)			Blow	s for De	pth Inc	rement			
5.00-5.10	14		19.85	5.00	0	5 10	15	20 2	25 ;	30 35	5 40	45	50
5.10-5.20	10			- -									
5.20-5.30	10												
5.40-5.50	14			- 									—
5.50-5.60	11 8		19.35	5.50									
5.70-5.80	10			- -									
5.80-5.90	15			-									
6.00-6.10	12		18.85	6.00									—
6.10-6.18	50											_	50
				- -									
			18.35										+
				-									—
				-									
				-									
			17.85	7.00									+
				- 									+
				-									
			17.35	7.50									
													+
													_
			16 85	- 8.00									
				-									
				-									_
			16.35	8.50									
				-									
				-									+
			15.85	9.00									_
			-	-									
				-									
			15.35	 9.50									—
			10.00	-									_
				-									
				-									
Demester			14.85	10.00									<u> </u>
Remarks											Scale (appro	x) By	gea
											1:25		
											Figur	e No.	
											9225	5-11-19	.DP11

Matched WWW.gii.ie Hackettstown, Skerries DP12 Method Dynamic Probe Cone Dimensions Ground Level (mOD) 25.88 Client DBFL Job Number 9225-11-19 Location (dGPS) 724997 E 759069.6 N Dates 21/02/2020 Engineer DBFL Sheet 1/1 Depth Blows for Minicrement Field Records Level (mOD) (mOD) 25.88 Depth (m) 25.88 Blows for Depth Increment Job Number 9225-11-19 100-0.10 3 Field Records Level (mOD) 25.88 0.00 Image: Content in the content i
Alethod Dynamic Probe Cone Dimensions Ground Level (mOD) 25.88 Client DBFL Job Number 9225-11-19 Location (dGPS) 724997 E 759069.6 N Dates Engineer Sheet Depth (m) Blows for Depth Increment Field Records Level (mOD) Depth (m) Depth 0 Blows for UP Uncrement Sheet 1.00-0.10 3 5 9 12 15 18 21 24 27 30 1.00-0.20 2 3 6 9 12 15 18 21 24 27 30 1.00-0.20 2 2 25.88 0.00 1 </th
Dynamic Probe Image: second
Location (dGPS) 724997 E 759069.6 N Dates Engineer Sheet Depth (m) Blows for Depth Increment Field Records Level (mOD) Depth (m) Depth 0 3 6 9 12 15 18 21 24 27 30 1.00-0.10 3 25.88 0.00 - </th
Depth (m) Blows for Depth Increment Field Records Depth (mOD) Depth (mOD) Depth (mOD) Depth (mOD) Blows for Depth Increment Increme
Depth (m) Blows for Depth Increment Field Records Depth (mOD) Depth (mOD) Depth (mOD) Depth (mOD) Blows for Depth Increment 0 3 6 9 12 15 18 21 24 27 30 1.00-0.10 3 25.88 0.00 -
100-0.10 3 6 9 12 15 18 21 24 27 30 100-0.10 3 25.88 0.00 1 1 1 1 1 1 10-0.20 2 2 1 1 1 1 1 1 1 10-0.20 2 1 1 1 1 1 1 1 1 10-0.20 2 1 1 1 1 1 1 1 1 10-0.20 2 1 1 1 1 1 1 1 10-0.20 3 3 1 1 1 1 1 1 10-0.20 3 1 1 1 1 1 1 10-0.20 3 1 1 1 1 1 1 10-0.20 3 1 1 1 1 1 1 1 10-0.20 3 1 1 1 1 1 1 10-0.20 3 1 1 1 1 1 1 10-0.20 3 1 1 1 1 1
1.10-0.20 2 1.20-0.30 3 1.30-0.40 3
1.20-0.30 3 1.30-0.40 3 1.40-0.50 3
40-0.50 3
25.35 0.50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.90-1.00 2
.00-1.10 4 10-1.20 5
.90-2.00 14 .00-2.10 17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
.40-2.50 23 2.50-2.60 28
22.88 3.00
20.88 5.00
Remarks Scale Logged (approx) By
1:25
Figure No.

	Ground Investigations Ireland Ltd				Site								Probe Numb	obe umber	
		www.gii.ie			Hacke	ttstown,	Skerries						DP1	3	
Method Dynamic F	Probe	Cone Dimensions	Ground L	_evel (mOD) 25.57	DD) Client DBFL							9	Job Number 9225-11-1		
		Location (dGPS)	Dates		Engine	ər							Sheet		
		725033.6 E 759081.3 N	21/02/2020		DBFL										
Depth (m)	Blows for Depth Increment	Field Records	Field Records				Blows for Depth Increment								
0.00-0.10	2		25.57	0.00		4 8			20				5 4	+0 	
0.10-0.20	3														
0.20-0.30 0.30-0.40	2 3			-											
0.40-0.50 0.50-0.60	2		25.07	0.50										\square	
0.60-0.70	3			-				_		+		+		-	
0.70-0.80 0.80-0.90	4 4			 - 				_						<u> </u>	
0.90-1.00 1.00-1.10	2 4		24.57	 1.00								_			
1.10-1.20	8			-											
1.20-1.30 1.30-1.40	5 5		-	-											
1.40-1.50 1.50-1.60	8		24.07	 								_		\vdash	
1.60-1.70	5			-				_				+		\vdash	
1.70-1.80 1.80-1.90	5 8			 - 								_		<u> </u>	
1.90-2.00 2.00-2.10	9 5		23.57	2.00			1					_			
2.10-2.20	6			- 											
2.20-2.30 2.30-2.40	11 10		-	-											
2.40-2.50 2.50-2.60	11 12		23.07	 										\vdash	
2.60-2.70	13		-	-				_						\vdash	
2.70-2.80 2.80-2.90	15 25							1		<u> </u>				<u> </u>	
2.90-2.97	35		22 57	- - - 3.00											
			22.01												
														-	
			00.07	-				-				_		\vdash	
			22.07	3.50 								_		<u> </u>	
				- 											
				-											
			21.57	4.00 										\square	
				-				-				_		-	
				-				_				_		<u> </u>	
			21.07	4.50 											
				-											
				-											
Remarks			20.57	5.00							Sca	le	Logge	⊢ ∋d	
											(app		-1		
											1:2 Figu	5 J re N	о.		
											922	25-11	-19 DI	P13	

C	Gro	und Investigations	s Ireland Ltd	Site	Probe Number		
		www.gii.ie		Hackettstown, Skerries	DP14		
Method Dynamic F	Probe	Cone Dimensions	Ground Level (mO 25.82	DD) Client DBFL	Job Number 9225-11-19		
		Location (dGPS) 725044 E 759049.5 N	Dates 21/02/2020	Engineer DBFL	Sheet 1/1		
Depth	Blows for	Field Decorde	Level Depth	Blows for Depth Increment			
0.00-0.10	1			0 3 6 9 12 15 18 21 24 2	27 30		
0.10-0.20	3						
0.20-0.30 0.30-0.40	2 2						
0.40-0.50	3						
0.60-0.70	3						
0.70-0.80 0.80-0.90	35		-				
0.90-1.00	4		24.82 - 1.00				
1.10-1.20	5		-				
1.20-1.30 1.30-1.40	5 5						
1.40-1.50	3		24.32 1.50				
1.60-1.70	7		-				
1.70-1.80 1.80-1.90	12 14		-				
1.90-2.00	18						
2.10-2.20	12		23.02 2.00				
2.20-2.30	21 12						
2.40-2.50	17						
2.50-2.60	22						
2.70-2.80	24						
			22.82 3.00				
			21.82 4.00				
Remarks			20.82 5.00	Scale (approx)	Logged By		
				1.25			
				Figure 1	No.		
				9225-1	1-19 DP14		

	Ground Investigations Ireland Ltd				Site									Probe Number		
	www.gii.ie				Hackettstown, Skerries									DP1		
Method		Cone Dimensions	Ground I	_evel (mOD)	Client									Job Number		
Dynamic P	Probe			25.55 DBFL								9225-11-19				
Location (dGPS)			Dates		Engine	ər								Sheet		
		725006.8 E 759034.3 N	21/0	02/2020	DBFL									17	·	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	36	B Q	lows f	or Dep	oth Inc	rement	21 2	24 2	77	30	
0.00-0.10	3		25.55	0.00		Ē	-	-	- '	Ē					+	
0.10-0.20	3														_	
0.20-0.30 0.30-0.40	3 4			-												
0.40-0.50 0.50-0.60	6 4		25.05	0.50												
0.60-0.70	4														+-	
0.70-0.80 0.80-0.90	5 4		-	-											+	
0.90-1.00 1.00-1.10	3 4		24.55	 1.00											_	
1.10-1.20	2			-												
1.20-1.30 1.30-1.40	3 3			-												
1.40-1.50	3		24.05	 											+	
1.60-1.70	2		21.00	- 											+	
1.70-1.80 1.80-1.90	3		-												+	
1.90-2.00	2		00.55	-												
2.10-2.10	4		23.55	2.00 												
2.20-2.30	5														+	
2.40-2.50	5			-											+	
2.50-2.60 2.60-2.70	9		23.05	— 2.50 - -											<u> </u>	
2.70-2.80	11			- 												
2.80-2.90	11			-												
3.00-3.10	16		22.55	3.00											+	
3.20-3.30	21			- 											+	
3.30-3.40 3.40-3.50	20			-								-			_	
3.50-3.60	13		22.05	3.50												
3.60-3.70	14			-												
3.80-3.90	16			 - 											+-	
4.00-4.10	15		21.55	4.00											+	
4.10-4.20	14			-											_	
4.30-4.40	16			- 												
4.40-4.50 4.50-4.60	18 19		21.05	4.50											\square	
4.60-4.70	20														+	
4.70-4.80 4.80-4.90	20 20			-											+	
			20.55	5.00												
Remarks												5	Scale approx)	Logg By	jed	
												ĺ	1.25			
												F	Figure	No.		
													9225-1	1-19.E)P15	

	Ground Investigations Ireland Ltd				Site									Probe Number		
		www.gii.ie				Hackettstown, Skerries								DP16		
Method	Ground L	evel (mOD)) Client								Job					
Dynamic Probe			2	24.90	DBFL									9225-1	1-19	
		Location (dGPS)	Dates	Enginee	r								Sheet			
		725066.4 E 758996.3 N	22/0	DBFL									1/	1		
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	Blows for Depth Increment											
0.00-0.10	3		24.90	0.00	0 3	3 6	9	1	2 18	5	18 2	21 :	24 2	27	30	
0.10-0.20	3			- 												
0.20-0.30 0.30-0.40	3 2			-												
0.40-0.50	3			- -											+	
0.50-0.60	5		24.40	0.50											<u> </u>	
0.70-0.80	4			- 												
0.80-0.90	4			- 		_										
1.00-1.10	4		23.90	1.00											+	
1.10-1.20	4			-											+-	
1.30-1.40	2			-												
1.40-1.50 1.50-1.60	3 4		23.40	1.50												
1.60-1.70	5			-											+	
1.70-1.80 1.80-1.90	5 6			- 											+-	
1.90-2.00 2.00-2.10	5 7		22.90	2.00			_									
2.10-2.20	9			- 												
2.20-2.30 2.30-2.40	10 12			-											<u> </u>	
2.40-2.50	16		22.40												+	
2.50-2.60	21		22.40	2.50											+-	
2.70-2.80	23			-												
2.00-2.90	22			- 												
			21.90	3.00											+	
															+	
				-												
			21.40	3.50												
				-												
				- -											+	
			20.90	4.00											_	
				- 												
			20.40	4.50											+	
				- 											+-	
			10.00	- 												
Remarks	1	L	19.90	J.00							1		Scale	Logg	ed	
												(approx)	ву		
													1:25			
													0225-11	-19 DI	PH16	

	Ground Investigations Ireland Ltd				Site	Pro Nu	Probe Number							
		www.gii.ie	ie Hackettstown, Skerries							DP17				
Method Cone Dimensions Ground Level (mOD) Client									Jol	Job				
Dynamic P	Probe		2	23.62	DBFL						922	5-11-19		
		Location (dGPS)	Dates		Engineer						Sh	eet		
		725100.2 E 759039.3 N	21/0	2/2020	DBFL							1/1		
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)										
0.00-0.10	3		23.62	0.00	0 3 6	39	12	15	18 2	1 24	27	30		
0.10-0.20	3			-										
0.20-0.30	2 4													
0.40-0.50	4			-										
0.50-0.60	3		23.12	0.50										
0.70-0.80	3			-										
0.80-0.90	4			-										
1.00-1.10	4		22.62	1.00										
1.10-1.20	4			-										
1.30-1.40	3													
1.40-1.50 1.50-1.60	2 5		22.12	- - 1.50										
1.60-1.70	4			-								+		
1.70-1.80 1.80-1.90	5 4											_		
1.90-2.00 2.00-2.10	4 29		21.62											
2.10-2.20	20			- -							_			
2.20-2.30	24													
				-								—		
			21.12	2.50 										
				-										
				-										
			20.62	3.00										
				- -										
			20.12	3.50										
				-								+		
			19.62	4.00										
				-										
				-										
			19.12	4.50										
												_		
			10 60	- 										
Remarks	1		18.02	0.00						Scale	Lo	 gged		
										(appro	x) By			
										1:25				
										9225	-11_1C	17P17		
	Gro	Ind Investigations	Ireland	l td	Site							P	Probe Numb	er
------------------------	------------------------------	---------------------	----------------	--------------	--------	--------------	---------	--------	---------	--------	---------------	--------------	---------------	------------
		www.gii.ie	nolana		Hacke	ettstown, Sł	kerries						DP1	8
Method		Cone Dimensions	Ground L	evel (mOD)	Client							ļ	Job	
Dynamic P	robe			23.75	DBFL							92	225-11	er 1-19
		Location (dGPS)	Dates		Engine	er						s	Sheet	
		725088.9 E 759079 N	21/0	2/2020	DBFL								1/1	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)			Blows	for De	pth Inc	rement				
0.00-0.10	3		23.75	0.00	0 :	3 6	9	12 '	15	18 2	1 24	27	3	0
0.10-0.20	2			-										
0.20-0.30	3													
0.40-0.50	2			- 										<u> </u>
0.50-0.60	3		23.25	— 0.50 —								_		
0.70-0.80	2			- 										
0.80-0.90	3			-										
1.00-1.10	4		22.75	1.00										-
1.10-1.20	3			-										-
1.20-1.30 1.30-1.40	2			- -										
1.40-1.50 1.50-1.60	4 4		22.25											
1.60-1.70	3			-										<u> </u>
1.70-1.80 1.80-1.90	5 6			-								_		-
1.90-2.00	7		21.75	- 2.00										
2.10-2.10	11		21.75											
2.20-2.30	10			-										
2.30-2.40	13			-								_		-
2.50-2.60	25		21.25	2.50										
2.60-2.70	23			-										
2.10 2.00	20													
			20.75	- 3.00								_		\vdash
				- -										
			20.25											
				- -								_		-
				-										
			40.75	- 4.00										
			19.75	4.00 										
				-										-
				-								_		_
			19.25	4.50										
				-										
				-				-				+		
			18.75	5.00								\downarrow		
Remarks											Scal (appr	e ox) E	_ogge 3y	٠d
											1.00	,		
											Figu	re Nc) .	
											922	5-11-	-19.DF	218

C	Gro	und Investigations	s Ireland	Ltd	Site	ttatown	Rorrigo						Prob Num	e ber
Method		WWW.gii.ie	Ground I	evel (mOD)	Client	usiown, c	skernes						DP'	19
Dynamic F	Probe			22.44	DBFL								Numl 9225-1	ber 1-19
		Location (dGPS)	Dates		Enginee	ər							Shee	t
		725079.2 E 759116.1 N	21/0	2/2020	DBFL								1/	1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	o :	36	Blow: 9	s for De 12	pth Inc 15	rement	t 21	24 2	27	30
0.00-0.10	3		22.44	0.00										+
0.10-0.20	3			- 									<u> </u>	+
0.30-0.40	2													
0.40-0.50 0.50-0.60	3 4		21.94	0.50										
0.60-0.70	4													—
0.70-0.80 0.80-0.90	2			- -										+
0.90-1.00 1.00-1.10	2 5		21.44	1.00										+
1.10-1.20	6													
1.20-1.30 1.30-1.40	5 4			- -										
1.40-1.50 1.50-1.60	3 5		20.94	 										+-
1.60-1.70	4			-										+
1.70-1.80 1.80-1.90	3 2			 - 										+
1.90-2.00 2.00-2.10	1 0		20.44	2.00										_
2.10-2.20	4			- -										
2.20-2.30 2.30-2.40	4 4			-										
2.40-2.50 2.50-2.60	8 11		19.94											+
2.60-2.70	8			- 										+
2.70-2.80 2.80-2.90	10 10			-										+
2.90-3.00 3.00-3.10	13 14		19.44	3.00										_
3.10-3.20	14			-										
3.20-3.30 3.30-3.40	17 19			-										
3.40-3.50 3.50-3.60	22 21		18.94	- 3.50										+
3.60-3.70	22			-										+
														<u> </u>
			18.44	- 4.00										
			10.44	- - -										
				-										+
				-									<u> </u>	+
			17.94	4.50 										_
				- 										
				-										
Remarks			17.44	5.00				-	1	1	±	Scale	Logg	ed
												1.25	-1	
											-	Figure	No.	
												9225-1	1-19.C)P19

C	Gro	und Investigations	s Ireland	Ltd	Site		0							Prob Num	ber
		www.gii.ie			Hacke	ettstown	, Sker	ries						DP	20
Method Dynamic F	Probe	Cone Dimensions	Ground L	.evel (mOD) 24.66	Client DBFL									Job Num 9225-	. ber 11-19
		Location (dGPS)	Dates	12/2020	Engine	er								Shee 1,	
Dopth	Plows for	724970.3 E 739020.0 N		Dopth				Ploye	for Do	nth Ind		•			
(m)	Depth Increment	Field Records	(mOD)	(m)	0	3 6	6	9	12	15	18	21	24 2	27	30
0.00-0.10	2		24.66	0.00											Ŧ
0.10-0.20	3			- -		-									+
0.30-0.40	4														
0.40-0.50 0.50-0.60	2 4		24.16	0.50											
0.60-0.70	4														+
0.70-0.80 0.80-0.90	5 4			- -											+
0.90-1.00 1.00-1.10	0 0		23.66												+
1.10-1.20	0			-											
1.20-1.30 1.30-1.40	4 5			-											
1.40-1.50	7		23 16	 											+
1.60-1.70	5		20.10						-						+
1.70-1.80 1 80-1 90	6			-											_
1.90-2.00	6			-											
2.00-2.10	6		22.66	2.00 											
2.20-2.30	8		-	- 											+
2.30-2.40	11			-											+
2.50-2.60	13		22.16	2.50											
2.60-2.70	16			-											
2.80-2.90	20														+
2.90-3.00 3.00-3.10	20 22		21.66	3.00										<u> </u>	+
				- -											
			21.16												+
				-											+
				-									_		+
			20.66	- 4.00											
			20.00	-											
				-											+
				-											+
			20.16	4.50											
															+
Remarks			19.66	5.00									Scale	Logo	 bed
													(approx)	By	,
													1:25		
													rigure	NO.	ממר

Parametric www.gii.e Parametri		Gro	und Investigations	Ireland	l td	Site									Prob Num	er
Method pyram: Dynamic 2003 De filoson 2000 2003 De fil			www.gii.ie	nolaria		Hacke	ettstown,	Skerrie	es						DP	21
non-participant non-participant <t< td=""><td>Method</td><td></td><td>Cone Dimensions</td><td>Ground L</td><td>evel (mOD)</td><td>Client</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Job</td><td></td></t<>	Method		Cone Dimensions	Ground L	evel (mOD)	Client									Job	
Leader (GPP) 20031 3 E 79203 7 NDesc 2004 0 2Permit 0 2004 0 2Desc 0 2004 0 2Desc 2004 0 2Desc 2004 0 2D	Dynamic F	Probe			19.42	DBFL								9	9225-1	1-19
12503 2 <th2< th=""> <th2< th=""> <th2< th=""> <th2< th=""></th2<></th2<></th2<></th2<>			Location (dGPS)	Dates		Engine	er								Shee	t
Image: constraint of the state of the st			725031.3 E 759203.7 N	22/0	2/2020	DBFL									1/	1
1100 100	Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)			E	Blows	for Dep	th Inci	rement				
0.002.00 4 0.004.00 0	0.00-0.10	3		19.42	0.00	0	3 6	9) 1	2 1	5 1	8 2	1 24	4 2	7	30
0 00000000000000000000000000000000000	0.10-0.20	4			-											
933000 3 100	0.20-0.30 0.30-0.40	23			-											
0.00000 3 1.000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000 0.00000000 0.0000000000 0.00000000000000 0.0000000000000000 0.0000000000000000000000 0.00000000000000000000000000000000000	0.40-0.50	2		19.02	- 0.50											+
00000000 3 0000100 2 0000100 0	0.60-0.70	3		10.92												+
000110 2 100	0.70-0.80 0.80-0.90	33														-
100-100 2 130-140 3 130-140 3 130-140 3 130-140 3 130-140 3 130-140 3 130-140 3 130-140 3 130-140 3 130-140 3 130-140 3 130-140 3 130-140 3 130-140 3 130-140 4 130-140 4 130-140 4 130-140 4 130-140 4 130-140 10 130-20 6 240-200 6 110 10 240-200 6 110 10 10 10 10 10 10 240-200 6 10 <	0.90-1.00	2		18 / 2	 											
1301-10 3 10	1.10-1.20	2		10.42												
100 100 3 17.92 1.50 1	1.20-1.30	3			 - 											+
130-10 3 132	1.40-1.50	3		17.02	- 1.50											+
130-100 10	1.60-1.70	3		17.92	- 1.50											+
1002.00 0 </td <td>1.70-1.80 1.80-1.90</td> <td>4 9</td> <td></td> <td></td> <td>-</td> <td></td> <td>_</td>	1.70-1.80 1.80-1.90	4 9			-											_
2002.00 0 </td <td>1.90-2.00</td> <td>10</td> <td></td> <td>17 42</td> <td>- - - 2.00</td> <td></td>	1.90-2.00	10		17 42	- - - 2.00											
2302200 7 0 </td <td>2.10-2.10</td> <td>6</td> <td></td> <td>17.42</td> <td>- 2.00</td> <td></td>	2.10-2.10	6		17.42	- 2.00											
240 2 50 8 10	2.20-2.30 2.30-2.40	7			 - 											+
200-200 13 10.32 1.03 10.32 1.03 10.32 10	2.40-2.50	8		16.02	- 2.50											+
270-280 13 1<	2.60-2.70	13		10.92												+
Remarks	2.70-2.80	13			-											
3.00-3.20 23 3.10-3.20 23 3.20-3.30 27 15.92 - 15.92 - 15.92 - 15.92 - 15.92 - 15.92 - 15.92 - 15.92 - 15.92 - 15.92 - 15.92 - 15.92 - 14.92 1 14.92	2.90-3.00	18		16.42	- 2 00											
320-3.30 27 1	3.10-3.20	20		10.42	3.00 											
Remarks Image: Constrained output to the sector	3.20-3.30	27														+
15.92 - 3.50 -<					 ·											+
Remarks Image: Constraint of the second				15.92	3.50 											L
Remarks Image: space of the symbol in t					- -											
Remarks 15.42 4.00 1					-											
Remarks Image: state in the state in				15.42	4.00											+
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																+
14.92 4.50 14.92 4.50 1																
Remarks Image: Constraint of the second				14.92	4.50											
Remarks Image: Constraint of the second					-											
Remarks Image: Note of the second					-											+
Remarks Scale (approx) By 1:25 Figure No.				14.42	5.00											<u> </u>
1:25 Figure No.	Remarks												S (a	cale pprox)	Logg By	ed
Figure No.													1	:25		
													F	igure I	NO.	

C	Gro	und Investigations	s Ireland Lte	d	Site		0							Prob Num	e ber
		www.gii.ie			Hacke	ttstown,	Skerri	es						DP	22
Method Dynamic F	Probe	Cone Dimensions	Ground Level 24.07	(mOD)	Client DBFL									Job Num 9225-	ber 11-19
		Location (dGPS)	Dates		Engine	er								Shee	
		724993.6 E 759153.7 N	22/02/202	:0	DBFL										
Depth (m)	Blows for Depth Incremen	Field Records	Level De (mOD) (i	pth n)	0 ;	36	 ; {	Blows 1	for Dep 2 1	oth Inc 15	rement 18 2	21 :	24 2	27	30
0.00-0.10	4		24.07	0.00											ŧ
0.10-0.20	3														+
0.20-0.30	2		-												
0.40-0.50 0.50-0.60	3 3		23.57	0.50											
0.60-0.70	3														+
0.70-0.80 0.80-0.90	3 3														+
0.90-1.00 1.00-1.10	1 3		23.07 - 1	.00											+
1.10-1.20	7														
1.20-1.30 1.30-1.40	10 9														
1.40-1.50	11		22 57 1	50											+
1.60-1.70	23													<u> </u>	+
1.70-1.80	26		-												_
			22.07 - 2	2.00											<u> </u>
															+
														<u> </u>	+
			21.57 2	2.50											
															+
			21.07	8.00											+
															_
			20.57 - 3	8.50											
			-												+
			-											<u> </u>	+
			20.07 4	l.00											\perp
															T
			19.57	50											+
				1.00										<u> </u>	+
Remarks		1	<u> 19.07 – 5</u>	0.00								<u> </u>	Scale	Loge	Jed
												C	αμμιοχ)	y	
													1:25 Figure	No.	
													9225-1	1-19 Г	1P22

C	Gro	und Investigations	Ltd	Site	ttataura Clu					F	Probe Numb	; ber	
		www.gii.ie			наске	ettstown, Ske	erries					DP2	23
Method Dynamic F	Probe	Cone Dimensions	Ground L	.evel (mOD) 25.41	Client DBFL						J N 92	Job Numb 225-1)er 1-19
		Location	Dates		Engine	er					٤	Sheet	t
	_	725005.4 E 759110.7 N	22/0	2/2020	DBFL							1/1	1
Depth (m)	Blows for Depth Incremen	Field Records	Level (mOD)	Depth (m)	0	5 10	Blows 1	for Depth	Increment	5 40	45	5 1	50
0.00-0.10	4		25.41	0.00							+0		Ê
0.10-0.20	3												L
0.20-0.30 0.30-0.40	2 3			- -									
0.40-0.50 0.50-0.60	3 4		24.91	0.50									
0.60-0.70	4												⊢
0.70-0.80 0.80-0.90	4 3			 -							_		\vdash
0.90-1.00 1.00-1.10	23		24.41	 									L
1.10-1.20	2			- -									
1.20-1.30 1.30-1.40	23			-									
1.40-1.50	2		23.01	 									\vdash
1.60-1.70	4		20.01	-							_		⊢
1.70-1.80 1 80-1 90	9		-	 - 									L
1.90-2.00	15			- -									
2.00-2.10	17		23.41	2.00									
2.20-2.25	50			-							+		50
				- -							_		⊢
			22.91	— 2.50 —					_				L_
				- -									
				-									
			22.41	3.00									\vdash
				- -									╞
													L
			21.91	- — 3.50									
			-	-									\vdash
			21.41	4.00							_		╞
				 - 									
				- -									
			20.91	4.50									\square
				- 							+		\vdash
				-							+		\vdash
			20.41	5.00									
Remarks										Sca		Logge By	əd
										(app)			
										1:2 Figu	o Ire No	0.	
											05 11	10 D	222

	Grou	und Investigations	Ireland	l td	Site							Pr Ni	obe Imber
		www.gii.ie	neiana	LIG	Hacket	ttstown, S	Skerrie	s				D	P24
Method		Cone Dimensions	Ground L	evel (mOD)	Client							Jo	b
Dynamic P	robe		:	23.99	DBFL							922	5-11-19
		Location	Dates	2/2020	Enginee	r						Sł	ieet
		725047.5 E 759115.1 N	21/0	3/2020-	DBFL								1/1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth			E	lows for	Depth In	crement			
0.00-0.10	3		23.99	0 00	0 3	6	9	12	15	18 2	21 24	27	30
0.10-0.20	3		20.00										
0.20-0.30	4			-									—
0.40-0.50	3			- 									
0.50-0.60	3		23.49	— 0.50 —						_			
0.70-0.80	3			-									
0.80-0.90	4			-									
1.00-1.10	4		22.99	1.00									
1.10-1.20	4			-									
1.20-1.30 1.30-1.40	4												
1.40-1.50 1.50-1.60	3 3		22.49										
1.60-1.70	4			-									
1.70-1.80 1.80-1.90	3 3			-									
1.90-2.00	2		21 99	- 2.00									
2.10-2.20	3		21.00	-									
2.20-2.30	4			-									<u> </u>
2.40-2.50	6												
2.50-2.60	7		21.49	2.50			Цļ						
2.70-2.80	18			-									
2.80-2.90	27												
3.00-3.10	25		20.99	3.00									—
				-									
			20.49										
				-									<u> </u>
				-						_			
			19 99	- 									
			13.33	- -									
				-									—
				-									
			19.49	4.50									
				-									
				-								-	+
			18.99	5.00								+	<u> </u>
Remarks											Scale (appro	∔ Lo ͻx) Βγ	gged /
											1:25		
											Figu	e No.	
											922	5-11-1	9 DP24

0	Gro	und Investigations	s Ireland Ltd	Site	Probe Number
		www.gii.ie		Hackettstown, Skerries	DP25
Method Dynamic F	Probe	Cone Dimensions	Ground Level (mO 24.58	D) Client DBFL	Job Number 9225-11-19
		Location (dGPS)	Dates	Engineer	Sheet
		724958.5 E 759055.3 N	22/02/2020	DBFL	1/1
Depth (m)	Blows for Depth Increment	Field Records	Level Depth (mOD) (m)	Blows for Depth Increment	45 50
0.00-0.10	3		24.58 0.00		
0.10-0.20	3		-		
0.20-0.30 0.30-0.40	3				
0.40-0.50 0.50-0.60	3 4		24.08 0.50		
0.60-0.70	3				
0.70-0.80 0.80-0.90	4 4		-		
0.90-1.00 1.00-1.10	4 4		23.58 1.00		
1.10-1.20	4				
1.20-1.30 1.30-1.40	4 4				
1.40-1.50 1.50-1.60	5		23.08 - 1.50		
1.60-1.70	8		-		
1.70-1.80 1.80-1.90	7 9				
1.90-2.00	10		22 58 - 2 00		
2.10-2.20	13				
2.20-2.30 2.30-2.40	17 14		-		
2.40-2.50	14				
2.50-2.60	12				
2.70-2.80	17				
2.90-3.00	20				
3.00-3.10	16		21.58 3.00		
3.20-3.29	50				50
			-		
			21.08 _ 3.50		
			-		
			20.58 4.00		
			20.08 4.50		
			-		
			-		
			19.58 5.00		
Remarks				Scale (appro	x) Logged By
				1:25	
				Figur	e No.
				9225	-11-19 DP25

APPENDIX 5 – Cable Percussion and Rotary Borehole Records

	Grou	nd In	vesti wv	gations Ire /w.gii.ie	land	Ltd	Site Hackettstown, Skerries	Borehole Number BH01
Machine : D Method : C	ando 1500 Cable Percussion	Casing 20	Diamete Omm cas	r ed to 7.10m	Ground	Level (mOD 19.35	DBFL	Job Number 9225-11-19
		Locatio	n 5040.3 E	759288.1 N	Dates 12 13	2/03/2020- 8/03/2020	Project Contractor Ground Investigations Ireland	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Kater Kater
0.40 0.70 1.00-1.38 1.50 2.00-2.45 2.50 3.00-3.45 3.30 4.00-4.45 4.50 5.00-5.45 5.70 6.00-6.45 6.50 7.10-7.30	B B SPT(C) 50/225 B SPT(C) N=44 B SPT(C) N=11 B SPT(C) N=10 B SPT(C) N=9 B SPT(C) N=9 B SPT(C) N=34 B SPT(C) 50/0			7,13/17,14,16,3 5,7/9,16,8,11 8,8/4,2,2,3 2,2/3,2,2,3 2,1/2,2,2,3 Water strike(1) at 5.90m, rose to 5.20m in 20 mins. 3,6/6,7,9,12 20/50	19.20 18.65 18.35 16.15 15.75 13.75 12.25	(0.15) (0.15) (0.30) 1.00 (0.30) 1.00 (0.30) 1.00 (0.40) 5.60 (1.50) (1.50) (1.50)	FILL. Grey sandy angular medium to coarse gravel (crushed rock fill). MADE GROUND. Reddish brown slightly gravelly sandy sity Clay with occasional subangular to subrounded cobblesred and brick and glass fragments. Gravel is fine to coarse subangular to subrounded. MADE GROUND Rreddish brown sandy gravelly CLAY with many subangular to subrounded. MADE GROUND reddish brown sandy gravelly CLAY with many subangular to subrounded. MADE GROUND to subrounded cobbles. Gravel is fine to coarse subangular to subrounded. MADE GROUND to subrounded cobbles. Gravel is fine to coarse subangular to subrounded. Firm brown/grey slightly sandy gravelly CLAY with occasional subangular to subrounded cobbles and woody fragments. Gravel fine to coarse subangular to subrounded. Firm brown slightly sandy gravelly CLAY with occasional subangular to subrounded cobbles. Gravel is fine to coarse subangular to subrounded cobbles. Gravel is fine to coarse subangular to subrounded. Medium dense sandy GRAVEL with occasional subangular to subrounded. Medium dense sandy GRAVEL with occasional subangular to subrounded. Complete at 7.10m	
Remarks Borehole bar Chiselling fro	ckfilled on completio om 7.10m to 7.10m f	n. or 1 hour.					Scale (approx) 1:50 Figure N 9225-11	Logged By CB Io. I-19.BH01

		Grou	nd In	vesti wv	gations Ire /w.gii.ie	land Lt	d	Site Hackettstown, Skerries	Borehole Number BH02
Machine : [Dando 2000 Beretta T44 Cable Percu) & ussion	Casing 20 96	Diamete Omm cas mm case	r ed to 5.00m d to 12.70m	Ground Lev 15.8	r el (mOD) 80	Client DBFL	Job Number 9225-11-19
F	and Rotary Follow on	Core	Locatio	n (dGPS 5029.5 E) 759251.3 N	Dates 26/02/ 26/03/	2020- 2020	Project Contractor Ground Investigations Ireland	Sheet 1/2
Depth (m)	Sample	e / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) nickness)	Description	Kater Vater
0.90 1.00-1.45 2.00 2.00-2.45 3.00 3.00-3.45	B SPT(C) B SPT(C) B SPT(C)) N=4) N=12) N=12			0,1/0,1,1,2 1,0/2,2,4,4 Water strike(1) at 2.20m, rose to 1.80m in 20 mins. 4,5/4,4,3,1		(0.50) 0.50 (1.20) 1.70 (2.10)	Brown slightly sandy slightly gravelly TOPSOIL. Gravel is subrounded, fine to coarse. Sand is fine to coarse. Soft greyish brown slightly gravelly sandy CLAY with rootlets and timber fragments. Gravel is subrounded, fine to coarse. Sand is fine to coarse (Possible Made Ground) Medium dense brownish grey slightly clayey sandy subangular to subrounded, fine to coarse GRAVEL with occasional sub-rounded cobbles. Sand is fine to coarse.	▼ 1
4.00 4.00-4.45	B SPT(C)) N=32			6,6/7,7,8,10	12.00	3.80	Stiff grey slightly sandy slightly gravelly CLAY. Gravel is subrounded, fine to coarse. Sand is fine to coarse.	
5.00-5.35	TCR	SCR	RQD	FI	8,10/19,25,6 SPT(C) 50/200	10.80	- 5.00	Stiff dark brownish grev slightly sandy slightly gravelly	······································
6.70.7.15	29				2,6/6,5,6,6 SPT(C) N=23			CLAY with occasional subangular to subrounded cobbles. Grave is subangular to subrounded fine to coarse. 5.00-6.00m BGL: Driller's Notes - Clay with occasional boulders	
6.70	83			1	4,4/5,6,6,7		(4.50)		
8.20-8.65 8.20	51				521(C) N=24				
9.70-9.85 9.70 9.80					6,19/50 SPT(C) 25*/140 50/10	6.30	9.50 (0.30) 9.80	Very stiff brown slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is angular to subrounded fine to coarse	0.0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0
Remarks Borehole ba Cable percu Rotary Core	ackfilled on ussion refus e follow on t	completio sal at 5.00 from 5.00r	n. Im BGL du m BGL	le to obst	ruction, possible bou	lder.		Scal (appro	e Logged bx) By
Chiselling fi	rom 5.35m i	to 5.35m f	or 0.5 hou	Irs.				1:50 Figu 922	JS & PC re No. 5-11-19.BH02

C		Grou	nd In	vesti	gations Ire	land	Ltd		Site Hackettstown Skerries		Borehole Number
			1	WV	vw.gii.ie	1				_	BH02
Flush : W	ando 2000 eretta T44 /ater) &	Casing 20	Diamete 0mm cas	r ed to 5.00m	Ground	Level (m) 15.80)D)	Client DBFL		Job Number
Core Dia: 63	3.5 mm		96	mm case	ed to 12.70m	Datas			Pulled Quedenter	9	0225-11-19
Method : C ar Fo	able Percu nd Rotary o ollow on	ussion Core	Locatio 72	5029.5 E	759251.3 N	26 26	/02/2020- /03/2020		Ground Investigations Ireland		2/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickne	ss)	Description	L	Nater Nater
	100	54	48	NI		5.00)0)	Medium strong grey fine grained LIMESTONEwith occasional calcite veining. Partially to distinctly weathered 9.80-10.80m - Mostly Non Intact	нннн	
10.80						5.00	E 10	.80	Medium strong to strong grey fine grained LIMESTONE with occasional calcite veining. Partially to distinctly	н-	
11.20				6			(0.9	90)	weathered 10.80-11.70m - Two fracture sets. F1: Closely to medium spaced, 0 to 10°, stepped rough with clay infilling. F2: Medium spaced, 60° to 80°, undulating	ННН	
11.70						4.10	E 11	70	rough	╶┢╉	
	100	94	88	2			(1.0	00)	calcite veining. Partially weathered 11.70-12.70m - F1: Medium spaced, 60° to 80°,	ННН	
						0.40		70	undulating rough with clay infilling	Н	
12.70						3.10		.70	Complete at 12.70m		
							E				
							E- E-				
							E- E- E-				
							<u>-</u>				
							Ē				
							E E				
							E- E-				
Remarks							F		Scale (approx	c)	Logged By
									1:50		JS & PC
									Figure	No.	•
									9225	-11-1	19.BH02

SI	Grou	nd In	vesti ww	gations Ire /w.gii.ie	land	Ltd	Site Hackettstown, Skerries		B N I	orehole lumber 3H03
Machine : Da Method : Ca	ando 2000 able Percussion	Casing 20	Diamete 0mm cas	r ed to 6.80m	Ground	Level (mOD 16.41) Client DBFL		J N 92	ob lumber 25-11-19
		Locatio	n (dGPS 4940.3 E) 759259.9 N	Dates 25 26	5/02/2020- 5/02/2020	Project Contractor Ground Investigations Ireland		s	heet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness) Description	Legend	Water	Instr
					16.11	(0.30)	Brown slightly sandy slightly gravelly TOPSOIL. Gravel is sub-rounded, fine to coarse. Sand is fin to coarse.	e	- <i>K</i> ///	
1.00-1.45 1.00	SPT(C) N=9 B			3,4/2,2,2,3	14.91	(1.20)	Soft to firm brown slightly gravelly sandy CLAY with rootlets and occasional sub-rounded cobbles Gravel is sub-rounded, fine to coarse. Sand is fin to coarse (Possible Made Ground).			
2.00-2.45 2.00	SPT(C) N=9 B			2,3/2,2,3,2	14.51	(0.40) 1.90 (1.10)	Firm brownish grevely sandy CLAY with rootels and occasional sub-rounded cobbles. Gravel is sub-rounded, fine to coarse. Sand is fine to coarse Firm brownish grey slightly sandy slightly gravelly CLAY with occasional sub-rounded cobbles and boulders. Gravel is sub-rounded, fine to coarse. Sand is fine to coarse.	e.		
3.00 3.00-3.45	B SPT(C) N=17			Water strike(1) at 2.90m, rose to 2.70m in 20 mins. 2,3/9,3,2,3	13.41	3.00	Stiff brownish grey slightly sandy slightly gravelly CLAY with occasional sub-rounded cobbles and boulders. Gravel is sub-rounded, fine to coarse. Sand is fine to coarse.			
4.00-4.45	SPT(C) N=32			3,4/6,10,8,8		(1.70)			الار الار الإر الا ا	
4.70 5.00-5.45	B SPT(C) N=21			17,6/4,5,5,7	11.71 11.41	4.70 (0.30) 5.00	Brownish grey slightly sandy clayey GRAVEL. Gravel is sub-rounded, fine to coarse. Sand is fin to coarse. (Driller notes pockets of Clay)	a , <u>, , , ,</u> a , <u>, , , , , , , , , , , , , , , , , ,</u>	er xo J.• x	
5.50	В					(1.10)	Gravel is sub-rounded, fine to coarse. Sand is fin to coarse.	e	• .1 • .4 • .1 • .1	
6.10 6.40 6.50-6.80	B B SPT(C) 50/150			14,7/5,5,40	10.31 10.01	6.10 (0.30) 6.40	Firm greyish brown slightly sandy slightly gravelly CLAY. Gravel is sub-angular to sub-rounded, fine to medium. Sand is fine to coarse.			
					9.61		Firm to stiff brown slightly sandy gravelly CLAY with occasional sub-angular to sub-rounded cobbles. Gravel is sub-angular to sub-rounded, fine to coarse. Sand is fine to coarse. Refusal at 6.80m			
Remarks Borehole bac Refusal at 6. Slotted pipe	ckfilled on completio 80m BGL due to obs with pea gravel surre	n. struction, p	possible r	ock or boulder. L to 1.0m BGI plain	pipe with	bentonite se	al from 1.0m BGL to around level finished with an	Scale (approx)		ogged y
upright cover Chiselling fro	r. m 5.00m to 5.00m f	or 0.25 ho	ours.		1-1-1 o 1111	000		1:50 Figure 1 9225-1	No.	JS 9.BH03

	Grou	nd In	vesti ww	gations Ire w.gii.ie	eland	Ltd	Site Hackettstown, Skerries	Borehole Number BH04
Machine : D B Method : C	Pando 2000 & Beretta T44 Cable Percussion	Casing 20 96	Diamete 0mm cas mm case	r ed to 3.20m d to 12.70m	Ground	Level (mOD) 19.92	Client DBFL	Job Number 9225-11-19
a	nd Rotary Follow On	Locatio	n (dGPS 4984.4 E) 759214.9 N	Dates 21 25	/02/2020- 5/03/2020	Project Contractor Ground Investigations Ireland	Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Vater Vater
1.00 1.00-1.45 1.80 2.00-2.45	B SPT(C) N=6 B SPT(C) N=30			1,1/1,1,2,2 4,4/6,7,8,9	19.77 18.22 17.92	(0,15) (0,15) (1.55) (1.55) (0.30) (0.30) (0.30)	Brown slightly sandy slightly gravelly TOPSOIL. Gravel is sub-rounded, fine to coarse. Sand is fine to coarse. Soft reddish brown sandy gravelly silty CLAY with occasional sub-rounded cobbles. Gravel is sub-rounded, fine to coarse. Sand is fine to coarse.	
2.50 3.00-3.20	B SPT(C) 50/50 TCR SCR	RQD	FI	10,22/50	10.70	(1.20)	to coarse GRAVEL with occasional sub-rounded cobbles. Sand is fine to coarse.	
3.20 3.70-4.15 3.70	80			5,5/5,5,7,8 SPT(C) N=25	16.72	3.20 (0.35) 3.55 (1.35) (1.35)	Stiff brown slightly sandy gravelly CLAY with occasional subrounded cobbles. Gravel is subangular to subrounded Recovery consists of medium dense grey subangular to subrounded fine to coarse GRAVEL with occasional subrounded cobbles Driller notes clay and cobbles.	
5.20-5.65 5.20	70			6,7/6,6,7,9 SPT(C) N=28	15.02	4.90 4.90 (1.80)	Stiff greyish brown slightly sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse	
6.70-7.15 6.70	77			8,9/9,10,12,12 SPT(C) N=43	13.22	6.70 (0.60) 7.30	Very stiff greyish brown slightly sandy slightly gravelly CLAY. Gravel is angular to subrounded fine to coarse Very stiff brown slightly sandy gravelly CLAY with occasional subangular to subrounded cobbles. Gravel is subangular to subrounded fine to coarse	
8.20-8.35 8.20 9.70	48			12,13/50 SPT(C) 25*/140 50/10		(3.40)		
Remarks Borehole ba Refusal at 3 Rotary Core Chiselling fro	ckfilled on completion .20m BGL due to obs follow on from 3.20m om 3.20m to 3.20m fo	n. struction, j n BGL or 0.6 hou	possible t	boulder.		<u>⊨</u>	Scale (approx) 1:50 Figure	JS & PC

Machine : Dando 2000 & Beretta T44 Flush : Water Casing Diameter 200mm cased to 3.20m 96mm cased to 12.70m Ground Level (mOD) 19.92 Client DBFL Jot Nu DBFL Core Dia: 63.5 mm Caction (dGPS) 724984.4 E 759214.9 N Dates 21/02/2020- 25/03/2020 Project Contractor Ground Investigations Ireland She Ground Investigations Ireland Depth (m) TCR SCR RQD Fi Field Records Level (mOD) Depth (Thickness) Description Lege 0.600 10.70 83 NI NI 8.62 10.70 Medium strong orange pinkish white medium grained LUMESTONE with occasional calcite veining and frequent vugs. Distinctly weathered 10.70-11.30m - Mostly Non Intact Medium strong orange pinkish white medium grained LUMESTONE with occasional calcite veining and frequent vugs. Distinctly weathered 10.70-11.30m - Mostly Non Intact 11.20 100 71 65 5 (1.40) 11.30-12.70m - F1: Closely to medium spaced, 0° to 10°, stepped rough	Boreho Numbe BH04	Site Hackettstown, Skerries	td	and I	igations Ire	vesti wv	nd In	Grou		
Core Dia: 63.5 mm Location (dGPS) Dates Project Contractor She Method : Cable Percussion and Rotary Follow On 724984.4 E 759214.9 N Dates 21/02/2020- Ground Investigations Ireland Ground Investigations Ireland She Depth (m) TCR SCR RQD Fi Field Records Level (mOD) Depth (Thickness) Description Lege 10.70 83 NI NI 9.22 10.70 Medium strong orange pinkish white medium grained LIMESTONE with occasional calcite veining and frequent vugs. Distinctly weathered Medium strong orange pinkish white medium grained LIMESTONE with occasional calcite veining and frequent vugs. Partially to distinctly weathered 11.20 100 71 65 5 (1.40) 11.30-12.70m - F1: Closely to medium spaced, 0° to 10°, stepped rough	Job Numbe 9225-11-	Client DBFL	evel (mOD) ∂.92	Ground .	r sed to 3.20m ed to 12.70m	Diamete 0mm cas mm case	Casing 20 96) &	ando 2000 eretta T44 /ater	Machine : D Bi Flush : W
Depth (m) TCR SCR RQD FI Field Records Level (mOD) Depth (Thickness) Description Lege 10.70 83 -	Sheet 2/2	Project Contractor Ground Investigations Ireland	2/2020- 13/2020	Dates 21/ 25/	;) : 759214.9 N	n (dGPS 4984.4 E	Locatio	ission Follow On	able Percu nd Rotary I	Method : C
83 NI 10.70 NI 11.20 NI 11.30 1100 71 65 5 (1.40) 100 71 65 5	Legend	Description	Depth (m) Thickness)	Level (mOD)	Field Records	FI	RQD	SCR	TCR	Depth (m)
12.70 7.22 12.70 Complete at 12.70m	ined frequent D° to	Medium strong orange pinkish white medium grained LIMESTONE with occasional calcite veining and freque vugs. Distinctly weathered 10.70-11.30m - Mostly Non Intact Strong orange pinkish white medium grained LIMESTO with occasional calcite veining and frequent vugs. Parti to distinctly weathered 11.30-12.70m - F1: Closely to medium spaced, 0° to 10°, stepped rough Complete at 12.70m	10.70 (0.60) 11.30 (1.40) 12.70	9.22 8.62 7.22		NI 5	65	71	83	10.70 11.20 11.30 12.70
Remarks Scale (approx) Loc By 1:50 1:50 JS & Figure No.	Scale (approx) Logged 1:50 JS & PC Figure No.	Sc (ap) 1: Fit								Remarks

Grour	nd Inve	estigations Irel	land Ltd	Site Hackettstown, Skerries		Boreho Numbe	ole er 5
Machine : Dando 2000	Casing Diar	meter	Ground Level (mOD)	Client		Job	
Method : Cable Percussion	200mm	n cased to 2.60m	20.94	DBFL		Numbe 9225-11-	ہ r 19-
	Location (d	IGPS)	Dates	Project Contractor		Sheet	
	725019	9.1 E 759188.7 N	27/02/2020	Ground Investigations Ireland		1/1	
Depth (m) Sample / Tests	Casing Wa Depth De (m) (r	ater epth Field Records m)	Level Depth (mOD) (m) (Thickness)	Description		Legend	Water
1.00-1.45 SPT(C) N=6 2.00-2.38 SPT(C) 50/230 2.60-2.62 SPT(C) 25*/20 50/0 SPT(C) 30/25*/20		1,0/1,0,2,3 6,11/13,20,17 Water strike(1) at 2,40m, rose to 2,00m in 20 mins. 25/50		Brown slightly sandy slightly gravelly TOPSOIL. Gr sub-rounded, fine to coarse. Sand is fine to coarse Soft brown slightly sandy gravelly CLAY. Gravel is sub-rounded, fine to coarse. Sand is fine to coarse (Possible Made Ground).	ional to		▼ 1 ▽ 1
Remarks Borehole backfilled on completior Refusal at 2.60m BGL due to obs Chiselling from 2.60m to 2.60m fo	n. truction. or 0.3 hours.				Scale (approx) 1:50 Figure N	JS o.	t

	Grou	nd In	vesti ww	gations Ire /w.gii.ie	land	Ltd		Site Hackettstown, Skerries		BN	orehole lumber H05A
Machine : D Method : C	ando 2000 able Percussion	Casing 20	Diamete 0mm cas	r ed to 4.60m	Ground	Leve 21.32	l (mOD)	Client DBFL		J N 92	ob lumber 25-11-19
		Locatio	n (dGPS 5018.9 E) 759185.4 N	Dates 27 28	7/02/2 3/02/2	020- 020	Project Contractor Ground Investigations Ireland		S	i heet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	D (Thie	epth (m) ckness)	Description	Legend	Water	Instr
1.00-1.45 1.00 2.00-2.45 2.00 3.00-3.32 3.10 4.00-4.35 4.00 4.30 4.60-4.60	SPT(C) N=3 B SPT(C) N=39 B SPT(C) 50/170 B SPT(C) 50/200 B B SPT(C) 25*/0 50/0			0,1/1,0,1,1 4,6/8,9,10,12 Water strike(1) at 2.80m, rose to 2.70m in 20 mins. 6,10/14,20,16 7,7/7,11,32 25/50	21.07 19.52 18.32 17.32 17.02 16.72		(0.25) 0.25 (1.55) 1.80 (1.20) 3.00 (1.00) 4.00 (0.30) 4.60	Brown slightly sandy slightly gravelly TOPSOIL. Gravel is sub-angular to sub-rounded, fine to coarse. Sand is fine to coarse. Very soft brown sandy gravelly CLAY with some roollets. Gravel is sub-angular to sub-rounded, fine to coarse. Sand is fine to coarse. Gravel is sub-rounded cobbles and boulders. Gravel is sub-rounded, fine to coarse. Sand is fine to coarse. Medium dense to dense brown clayey gravelly find to coarse SAND. Gravel is sub-angular to sub-rounded, fine to coarse. Stiff brownish fire to coarse. GRAVEL. Sand is fine to coarse. Stiff brownish grey slightly sandy sub-angular to sub-rounded, fine to coarse. Refusal at 4.60m			
Remarks Borehole bar Refusal at 4. Slotted pipe upright cove Chiselling fro	ckfilled on completio 60m BGL due to obs with pea gravel surre r. om 4.60m to 4.60m f	n. struction. I ound from for 0.5 hou	Possible I 4.6m BC	boulder or rock. SL to 1.0m BGL, plain	pipe with	bento	nite seal	from 1.0m BGL to ground level, finished with an	Scale (approx) 1:50 Figure 9225-1	No. 1-19	jogged jy JS .BH05A

	Grou	nd In	vesti ww	gations Ire /w.gii.ie	land	Lto	ł	Site Hackettstown, Skerries	Bore Num BH	ehole iber 106
Machine : D Method : C	ando 2000 Cable Percussion	Casing 20	Diamete 0mm cas	r ed to 4.00m	Ground	Lev 20.9	e l (mOD) 2	Client DBFL	Job Num 9225-	n ber -11-19
		Locatio	n (dGPS 5062.5 E) 759157 N	Dates 20 21)/02/: 1/02/:	2020- 2020	Project Contractor Ground Investigations Ireland	Shee 1	et I/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	(Th	Depth (m) ickness)	Description	Leger	pu Water
1.00-1.45 1.00	SPT(C) N=6 B			0,1/1,2,1,2	20.62		(0.30) 0.30 (1.80)	Brown slightly sandy slightly gravelly TOPSOIL. Gravel is sub-rounded, fine to coarse. Sand is fine to coarse. Soft brown slightly sandy slightly gravelly CLAY with rootlets. Gravel is sub-rounded, fine to coarse. Sand is fin to coarse (Possible Made Ground).	e	
2.00-2.45 2.20	SPT(C) N=27 B			2,3/5,6,8,8 Water strike(1) at 2.30m, rose to 2.20m in 20 mins.	18.82		2.10 (0.90)	Stiff brown slightly sandy slightly gravelly CLAY with occasional sub-rounded boulders. Gravel is sub-rounded, fine to coarse. Sand is fine to coarse.		<u>☆ :ਲ਼[:৯ :৯ </u> ≰
3.00-3.25 3.10	SPT(C) 50/100 B			10,13/25,25	17.92		3.00 (1.00)	Medium dense to dense brown clayey sandy GRAVEL wit occasional sub-rounded cobbles. Gravel is sub-rounded, fine to coarse. Sand is fine to coarse.	h 6000000000000000000000000000000000000	<u>। संदिधि संदित्तिः</u> €
4.00-4.00	SPT(C) 25*/0 50/0			Water strike(2) at 4.00m, rose to 3.85m in 20 mins. 25/50	16.92		4.00	Refusal at 4.00m		
Remarks Borehole ba Refusal at 4	ckfilled on completio	n. struction, j	possible t	boulder or rock.	00 f -			Scal (appro	e Log x) By	ged
Chiselling fr	om 3.70m to 3.70m f	or 0.3 hou	ırs. Chise	Iling from 4.00m to 4.	00m for 0	.5 hc	ours.	1:50) Je	S
								922	т е по. 5-11-19.ВІ	H06

	Grou	nd In	vesti wv	gations Ire /w.gii.ie	land	Ltc	ł	Site Hackettstown, Skerries		BN	lorehole lumber BH07
Machine : D Method : C	ando 2000 Cable Percussion	Casing 20	Diamete 0mm cas	r ed to 7.10m	Ground	Leve 19.02	e l (mOD)	Client DBFL		J N 92	ob lumber 25-11-19
		Locatio	n (dGPS 4929.7 E) 759222.4 N	Dates 24 25	4/02/2 5/02/2	2020- 2020	Project Contractor Ground Investigations Ireland		S	heet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	C (Thi	Depth (m) ickness)	Description	Legenc	Water	Instr
1.00-1.45 1.00	SPT(C) N=8 B			1,2/2,1,2,3	18.52		(0.50) 0.50 (1.10)	Brown slightly sandy slightly gravelly TOPSOIL. Gravel is sub-rounded, fine to coarse. Sand is fin- to coarse. Soft brown slightly sandy slightly gravelly CLAY with rootlets. Gravel is sub-angular to sub-rounde fine to coarse. Sand is fine to coarse (Possible Made Ground).	d,		
2.00-2.45 2.00	SPT(C) N=6 B			2,2/2,1,1,2 Water strike(1) at 2.10m, rose to 1.85m in 20 mins.	11.42		(1.40)	Soft brown sandy gravelly CLAY. Gravel is sub-rounded, fine to coarse. Sand is fine to coars	8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	_ ▼ 1	
3.00-3.45 3.00	SPT(C) N=11 B			1,2/2,2,3,4	16.02		3.00 (0.40) 3.40	Firm brown slightly sandy slightly gravelly silty CLAY. Gravel is sub-rounded, fine to medium. Sand is fine to coarse.	×. · · · · · · · · · · · · · · · · · · ·		
3.50	В				15.12		(0.50)	Firm to stiff reddish brown slightly sandy slightly gravelly silty CLAY. Gravel is sub-rounded, fine to coarse. Sand is fine to coarse.	×		
4.00-4.45 4.20	SPT(C) N=34 B			9,7/5,9,10,10	13.12		(1.90)	Medium dense brown slightly clayey slightly sand sub-angular to sub-rounded, fine to coarse GRAVEL with occasional sub-angular to sub-rounded cobbles. Sand is fine to coarse. (Driller notes occassional pockets of Clay)	Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.00 million 200 million	
5.00-5.45 5.20	SPT(C) N=30 B			5,5/6,7,9,8	13.22		5.80	Stiff raddiab brown alightly gravelly		2012 C 12 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	
6.20 6.50-6.95	B SPT(C) N=29			6,5/6,6,8,9			(1.30)	CLAY Gravel is sub-rounded, fine to medium. Sand is fine to coarse.			
7.10-7.10	SPT(C) 25*/0 50/0			25/50	11.92		7.10	Refusal at 7.10m			
Remarks Borehole ba Refusal at 7 Slotted pipe upright cove Chiselling fro	ckfilled on completio .10m BGL due to obs with pea gravel surr r. om 7.10m to 7.10m f	n. struction, j ound from or 0.6 hou	possible I i 7.0m BG	boulder or rock. SL to 1.0m BGL, plain	pipe with	bento	onite seal	l from 1.0m BGL to ground level, finished with an	Scale (approx) 1:50	B	.ogged by JS
Ŭ									Figure I 9225-1	No.	9 BH07

		Grou	nd In	vesti wv	igations Ire vw.gii.ie	land	Ltc	ł	Site Hackettstown, Skerries		Borehole Number RC08
Machine : B Flush : W	eretta T44 /ater		Casing 96	Diamete mm case	ed to 12.70m	Ground	Leve 19.02	I (mOD)	Client DBFL		Job Number 9225-11-19
Core Dia: 63	3.5 mm otary Core	d	Locatio	n (dGPS 5054.4 E	s) 5759189.6 N	Dates 26	6/03/2	:020	Project Contractor Ground Investigations Ireland		Sheet 1/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	C (Thi	Depth (m) ckness)	Description		Legend X
	93	-				18.82		(0.20) 0.20 (0.80)	_TOPSOIL Soft to Firm brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse		
1.00 1.00-1.45	60	-			2,2/3,3,4,3 SPT(C) N=13	18.02		1.00	Firm to stiff brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse		······································
2.20 2.20-2.65					2,3/3,4,4,5 SPT(C) N=16	16.82		2.20 (0.90)	Stiff brown slightly sandy slightly gravelly CLAY. Gravel i subangular to subrounded fine to coarse	is .	· · · · · · · · · · · · · · · · · · ·
	59	-				15.92		3.10 (0.60) 3.70	Stiff light brown slightly sandy gravelly CLAY with occasional subangular cobbles. Gravel is subangular to subrounded fine to coarse	, <u>,</u>	0 <u>10 0</u> 0 <u>10 0</u> 0 <u>0 0</u> 0 <u>0</u> 0
3.70 3.70-4.15	47	-			4,///,8,7,9 SPT(C) N=31				subangular cobbles. Gravel is subangular to subrounde fine to coarse	id -	
5.20 5.20-5.65	23	-			9,10/9,11,11,12 SPT(C) N=43			(3.30)		- - - - - - - - - - - - - - - - - - -	21 21 21 21 21 21 21 21 21 21
6.70 6.70-7.15	65	-			10,9/10,11,11,10 SPT(C) N=42	12.02		7.00	Very stiff brown slightly sandy gravelly CLAY with occasional subangular cobbles and boulders of Limesto Gravel is angular to subrounded fine to coarse	one.	
8.20 8.20-8.36 9.70	75	-			11,14/50 SPT(C) 50/10 12,12/14,15.21			(4.10)		- - - - - - - - - - - - - - - - - - -	
9.70-10.08 Remarks	ckfilled on	completio	 n.		SPT(C) 50/225		E			ale	<u>b</u> ;; Fogged
Derendle ba		Sempletio							(app 1:	50	₽y PC & CB
									Fig 92	jure No 225-11-). 19.RC08

		Grou	nd In	vesti ww	gations Ire /w.gii.ie	land	Ltd	Site Hackettstown, Skerries		Borehole Number RC08
Machine : B Flush : W	eretta T44 /ater		Casing 96	Diamete mm case	r d to 12.70m	Ground	Level (mOD) 19.02	Client DBFL		Job Number 9225-11-19
Core Dia: 63	3.5 mm otary Core	d	Locatio	n (dGPS 5054.4 E) 759189.6 N	Dates 26	/03/2020	Project Contractor Ground Investigations Ireland		Sheet 2/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Kater
44.40	80	80	0			7.92		Strong grey fine grained LIMESTONE with some c	alcite	
11.20	93	75	68	5			(1.60)	veining. Partially weathered. One set of fractures. F1 5-15 degrees. Closely sp undulating smooth closed.	baced	
12.70						6.32		Complete at 12.70m		
Remarks	1	<u> </u>	1			<u> </u>	<u> </u>		Scale (approx)	Logged By
								ļ	1:50	PC & CB
									Figure N 9225-11	o. -19.RC08

		Grou	nd In	vesti wv	gations Ire vw.gii.ie	land	Ltd		Site Hackettstown, Skerries		B N F	orehole umber {C09
Machine : B Flush : W	eretta T44 /ater		Casing 96	Diamete mm case	r d to 15.50m	Ground	Level (m0 25.01	OD)	Client DBFL		Jo N 922	ob umber 25-11-19
Method : R	otary Core	d	Locatio	n (dGPS 4967.4 E) 759062.1 N	Dates 26 27	6/03/2020- 7/03/2020		Project Contractor Ground Investigations Ireland		SI	heet 1/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickne	ı əss)	Description	Legend	Water	Instr
0.00	- 86	-				24.81		20) 20 00)	_TOPSOIL Soft to firm brown slightly sandy gravelly CLAY with occasional cobbles of limestone. Gravel is subangular-subrounded fine-coarse.			
2.20 2.20-2.65	90	-			2,2/3,3,4,6 SPT(C) N=16	22.81	2. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	.20	Stiff brown slightly sandy gravelly CLAY with occasional cobbles of limestone. Gravel is subangular-subrounded fine-coarse.			
3.70 3.70-4.15	83	-			8,10/12,11,12,14 SPT(C) N=49	21.31	3.	.70	Very stiff brown slightly sandy gravelly CLAY with occasional cobbles of limestone. Gravel is subangular-subrounded fine-coarse.			
5.20 5.20-5.65	67	-			10,11/10,12,14,14 SPT(C) N=50	18.61		.40	Poor Recovery. Recovery consists of slightly			
6.70 6.70-7.15	20	-			8,8/9,10,12,16 SPT(C) N=47				subargular-subrounded fine-coarse. Driller notes: gravelly Clay.			
8.20 8.20-8.65	27	-			7,11/12,10,10,12 SPT(C) N=44		(5. ⁻	10)				
9.70 9.70-10.15					11,13/12,12,14,16 SPT(C) N=54					· · · · · · · · · · · · · · · · · · ·		
Remarks Borehole con Borehole ba	mpleted at	15.50m B	GL. tition.							Scale (approx)	L(B	ogged Y
Slotted pipe an upright co	with pea grover.	ravel surro	ound from	15.50m	BGL to 1.0m BGL, pla	ain pipe wi	th bentoni	ite se	eal from 1.0m BGL to ground level, finished with	1:50		СВ
										Figure N 9225-11	lo. I-19	.RC09

SI		Grou	nd In	vesti wv	gations Ire w.gii.ie	land	Ltd	Site Hackettstown, Skerries		B N F	orehole umber RC09
Machine : Be Flush : W	eretta T44 ater		Casing 96	Diamete mm case	r d to 15.50m	Ground	Level (mOD) 25.01	Client DBFL		J N 92	ob umber 25-11-19
Method : Ro	otary Core	d	Locatio 72	n (dGPS 4967.4 E) 759062.1 N	Dates 26 27	5/03/2020- 7/03/2020	Project Contractor Ground Investigations Ireland		S	heet 2/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
	47	-									
11.20 11.20-11.21	47	-			25/50 SPT(C) 25*/10 50/0	13.51	11.50	Very stiff pinkish brown sandy gravelly CLAY. Gravel is subangular-subrounded fine-coarse.			
12.70 12.70-12.71 13.10	100	64	49		22,3/50 SPT(C) 25*/10 50/0	11.91		Medium strong light grey fine grained LIMESTONE partially-distinctly weathered with occasional calcite veining. One set of fractures. F1 20-30 degrees. Closely spaced undulating closed smooth.			
14.20	100	83	83	8		0.54	(2.40)				
15.50						9.51		Complete at 15.50m			
Remarks									Scale (approx) 1:50 Figure N 9225-1	lo. 1-19	CB .RC09

		Grou	nd In	vest wv	igations Ire vw.gii.ie	land	Ltd	Site Hackettstown, Skerries	Borehole Number RC10
Machine : B Flush : W	eretta t44 /ater		Casing 96	Diamete mm case	ed to 18.20m	Ground	Level (mOD) 24.03	Client DBFL	Job Number 9225-11-19
Method : R	otary Core	ed	Locatio	n (dGPS 4951 E 7	5) 759129.3 N	Dates 27	//03/2020	Project Contractor Ground Investigations Ireland	Sheet 1/2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Kater Vater
0.00	- 57	-				23.83	(0.20) 0.20 0.20 (2.10)	_TOPSOIL Soft light brown slightly sandy gravelly CLAY. Gravel is fine to coarse subangular to subrounded.	
2.20 2.20-2.65	87	-			1,2/4,4,5,4 SPT(C) N=17	21.73	2.30	Stiff light brown slightly sandy gravelly CLAY. Gravel is fine to coarse subangular to subrounded.	
3.70 3.70-4.15	20	_			6,6/7,8,6,5 SPT(C) N=26	20.33	3.70	Poor recovery. Recovery consists of slightly sandy clayey GRAVEL with occasional cobbles of varying lithologies. Gravel is fine to coarse subangular to subrounded. Driller notes: fine Sand and gravelly Clay.	
5.20 5.20-5.65	20	-			7,6/6,7,8,7 SPT(C) N=28				
6.70 6.70-7.15	17	-			6,7/8,8,9,9 SPT(C) N=34				
8.20 8.20-8.65	20	-			7,7/9,8,8,9 SPT(C) N=34		(10.50)		
9.70 9.70-10.15					6,6/5,4,6,5 SPT(C) N=20		-		••••• •••••
Borehole con Borehole ba	mpleted at ckfilled up	18.20m B on comple	GL. tion.					Scale (appro:	k) Logged k) By
								1:50 Figure	CB
								9225	-11-19.RC10

SI		Grou	nd In	vesti wv	igations Ire vw.gii.ie	land	Ltd	Site Hackettstown, Skerries	Boreh Numb RC1	iole ber 10
Machine : Bo Flush : W	eretta t44 /ater		Casing 96	Diamete mm case	ed to 18.20m	Ground	Level (mOD) 24.03	Client DBFL	Job Numb 9225-1)er 1-19
Method : R	otary Core	ed	Locatio	n (dGPS 4951 E 7	3) /59129.3 N	Dates 27	7/03/2020	Project Contractor Ground Investigations Ireland	Sheet 2/2	2
Depth (m)	TCR	SCR	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
	23	-								ι , ,
11.20 11.20-11.65	23	-			9,10/10,9,8,10 SPT(C) N=37					> 7 7 7
12.70 12.70-13.15	10	-			11,12/11,10,12,10 SPT(C) N=43					r > 7 7
14.20 14.20-14.20	80	-			25/50 SPT(C) 25*/0 50/0	9.83 9.43	14.20 (0.40) 14.60	Very stiff dark brown slightly sandy slightly gravelly CLAY. Gravel is fine to coarse subangular to subrounded. Possible weathered rock. Hard pinkish grey gravelly CLAY. Gravel is fine to coarse subangular to subrounded.		
15.70 15.70-15.70	33	_			25/50 SPT(C) 25*/0 50/0		(2.60)			
17.20						6.83		Complete at 17.20m		-
Remarks		<u> </u>	<u> </u>		1		F	Scale (approx	:) Logge By	⊥ ∋d
								1:50 Figure	CB	
								9225	11-19.RC	10

BH02

BH04

BH04

CROUND INVESTIGATIONS IRELAND Geotechnici & Environmental	
Client: DBFL	Job Ref: 9235-21-19
Site: HACKETTSTOWN	Date: 25/03/20
Borehole ref: BHO 4	Depth: From 11.80 12.70
Box No: 3 of 3	
CM 10 20 30 40 5	50 60 70 80 90 100
ITERA DE LA COMPANY	A Start A
	1

RC08

RC09

APPENDIX 6 – Laboratory Testing

National Materials Testing Laboratory Ltd.

				Particle			Index Properties		Bulk	Cell	Undrained Triaxial Tests		Lab	
BH/TP	Depth	Sample	Moisture	Density	<425um	LL	PL	PI	Density	Presssure	Compressive	Strain at	Vane	Remarks
No	m	No.	%	Mg/m3	%	%	%	%	Mg/m3	kPa	Stress kPa	Failure %	kPa	
TP01	2.70	В	15.5		73.3	28	16	12						
TP09	1.50	В	13.3		52.5	25	16	9						
TP10	1.50	В	19.7		52.5	26	15	11						
TP103	1.50	В	14.1		69.5	27	16	11						
NMTL		Notes : 1. All BS tests carried out using preferred (definitive) method unless otherwise stated.									Job ref No.	NMTL 3139	GII Project ID:	9225-11-19
											Location	Hackettstown		

SUMMARY OF TEST RESULTS

DETERMINATION OF THE CALIFORNIA BEARING RATIO TEST BS 1377 : PART 4 : CLAUSE 7 : 1990

Soil Description Light brown slightly sandy slightly gravelly SILT/CLAY Date 13-Dec-19 0.035 Test Method BS 1377: Part 4 : 1990 :7.4 Force Measuring Device VJT 08211 Test 1 Preperatic Remoulded with 2.5 kg rammer at natural moisture content Surcharge 10 kPa Mean Calibration 4.33 N/Div Penetration Force Gauge Force on 4.33 N/Div of plunger reading plunger California Bearing Ratio Results 0.030 mm divisions kŇ % Тор Bottom Тор Bottom Тор Base 0.00 0.0 0.0 0.000 0.000 0.25 0.5 1.5 0.002 0.006 0.50 0.5 2.0 0.002 0.009 0.75 1.0 2.0 0.004 0.009 0.025 1.00 1.0 2.5 0.004 0.011 1.25 1.5 2.5 0.006 0.011 1.50 1.5 3.0 0.006 0.013 1.75 2.0 3.0 0.009 0.013 2.00 2.0 3.0 0.009 0.013 on plunger kN 2.25 2.5 3.5 0.011 0.015 0.020 2.50 2.5 4.0 0.011 0.017 0.08 0.13 2.75 3.0 4.0 0.013 0.017 3.00 3.0 4.0 0.013 0.017 3.25 3.5 4.5 0.015 0.019 3.50 3.5 4.5 0.015 0.019 Force (3.75 4.0 4.5 0.017 0.019 0.015 4.00 4.0 5.0 0.017 0.022 4.25 4.0 5.0 0.017 0.022 4.50 4.5 5.0 0.019 0.022 4.75 4.5 5.5 0.019 0.024 4.5 0.024 0.10 0.12 5.00 5.5 0.019 5.25 5.0 5.5 0.022 0.024 0.010 5.50 5.0 6.0 0.022 0.026 5.0 0.022 5.75 6.0 0.026 6.00 5.5 6.0 0.024 0.026 5.5 6.25 6.5 0.024 0.028 6.50 5.5 6.5 0.024 0.028 6.75 5.5 7.0 0.024 0.030 0.005 7.00 6.0 7.0 0.026 0.030 7.25 6.0 7.5 0.026 0.032 7.50 6.0 7.5 0.026 0.032 Moisture content after test Тор Middle Base Specimen wt g 4585 Container No. Diameter mm 152 Tray Tray Tray Mass of wet soil + container 1812.9 127.0 1842.9 1390.2 Length mm g Mass of drv soil + container 1546.8 1525.4 1170.0 g 0.000 : 1.00 2.00 3.00 4.00 Weight of container 146.2 186.1 142.8 0.00 5.00 6.00 7.00 8.00 g 220.2 Average MC % Mass of moisture 296.1 287.5 21.35 g Penetration mm Dry weight 1400.6 1339.3 1027.2 Density Mg/m3 1.99 g Moisture content 21.1 21.5 Dry Density Mg/m3 1.64 % 21.4 NM Project No. NMTL3107 Date Project: Hackettstown 13-Dec-19 Trial Pit No. CBR19 TL Operator Tch Ltd GII Project ID: 9225-11-19 Checked Nc Sample No. в Depth 0.50m Approved BC

DETERMINATION OF THE CALIFORNIA BEARING RATIO TEST BS 1377 : PART 4 : CLAUSE 7 : 1990

Soil Description Brown slightly sandy slightly gravelly SILT/CLAY

Soli Description	Brown sligr	itiy sandy	slightly gra	aveny SIL	I/GLAY	Data	13-Doc-10	0.160 -									_
Test Method	BS 1377 P	art 4 · 199	0.74			Date	13-Dec-19	0.100									
Force Measuring	Device	VJT 0821	1				Test 1										
Preperatic Remo	ulded with 2.5	ka ramme	er at natur	al moistur	e content	t											
Surcharge	10 kPa	5		Mean Ca	libration	4.33	N/Div										
Penetration	Force Gaug	qe		Force on		4.33	N/Div	0 140								×	
of plunger	reading	-		plunger		California Bearing R	atio Results	0.140									
mm	divisions			kN		%										×	
	Тор	Bottom		Тор	Bottom	Тор	Base								× ×		
0.00	0.0	0.0		0.000	0.000				1								
0.25	1.0	2.0		0.004	0.009				1								
0.50	2.0	3.0		0.009	0.013			0.120 -						/			
0.75	3.0	4.0		0.013	0.017			-	1								
1.00	4.0	5.0		0.017	0.022				1								
1.25	5.0	6.0		0.022	0.026			-	1								
1.50	6.0	7.0		0.026	0.030												
1.75	7.0	0.0		0.030	0.035			0.100 -									
2.00	8.0	9.0		0.035	0.039		:	z .					X				
2.20	9.0	11.0		0.039	0.043	0.22	0.36	¥ .									
2.50	11.0	12.0		0.043	0.040	0.55	0.50	de .	-								
3.00	12.0	13.0		0.040	0.052			uni -	-			x					
3.25	13.0	14.0		0.056	0.061			0 0.080 -				1					-
3.50	15.0	15.0		0.065	0.065			ō .	-		/						
3.75	16.0	16.0		0.069	0.069			- LCE				Ţ					
4.00	18.0	17.0		0.078	0.074			<u>.</u>									
4.25	19.0	19.0		0.082	0.082				-								
4.50	20.0	20.0		0.087	0.087			0.060 -									-
4.75	21.0	21.0		0.091	0.091				-								
5.00	22.0	22.0		0.095	0.095	0.48	0.48	-	-								
5.25	23.0	23.0		0.100	0.100				-	× ×							
5.50	24.0	24.0		0.104	0.104			-	-								
5.75	26.0	25.0		0.113	0.108			0.040 -									-
6.00	27.0	26.0		0.117	0.113			-									
0.20	28.0	27.0		0.121	0.117												
6.75	29.0	20.0		0.120	0.121			-									
7.00	31.0	31.0		0.130	0.130												
7.25	32.0	32.0		0.139	0.139			0.020 -									_
7.50	33.0	33.0		0.143	0.143												
Moisture content	after test		Тор	Middle	Base	Specimen wt g	4685		x x								
Container No.			Tray	Tray	Tray	Diameter mm	152		× ×								
Mass of wet soil	+ container	g	1759.2	1727.7	1671.1	Length mm	127.0	-									
Mass of dry soil -	+ container	g	1516.8	1482.4	1436.4			0.000			\cdots	+				+	_
Weight of contair	ner	g	190.7	145.3	148.8			0.0	.00 1.00 2.	00 3	.00 4	.00	5.00	6.00	7	.00	8.00
Mass of moisture	•	g	242.4	245.4	234.7	Average MC %	18.29				Penetrat	ion mm					
Dry weight		g	1326.1	1337.0	1287.6	Density Mg/m3	2.03										
Moisture content		%	18.3	18.4	18.2	Dry Density Mg/m3	1.72				Тор	Base					
NM													г		Date	Project No.	NMTL3107
						Draiget											
TL						Fioject:	nackellslown						Operator	ICh	13-Dec-19	I rial Pit No.	CBR20
Lte	đ										GII Project ID: 9	225-11-19	Checked I	Nc		Sample No.	В
													Approved	Bc		Depth	0.50m

DETERMINATION OF THE CALIFORNIA BEARING RATIO TEST BS 1377 : PART 4 : CLAUSE 7 : 1990

Soil Description Light brown/orange brown slightly sandy slightly gravelly SILT/CLAY

Soil Description	Brown sligh	ntly sandy	slightly gra	avelly clay	yey/SILT	Dete	10 Dec 10	0.200										
Toot Mothod	DC 1277- D	ort 4 · 100	0.74			Date	16-Dec-19	0.200										7
Force Measuring	Dovico	VIT 0921	0:7.4 1				Tost 1											
Preperatic Remo	Ided with 2 5	ka ramma	ı ar at natur	al moistu	e content	•	16311											
Surcharge	10 kPa	ng rannin	si at natun	Mean Ca	libration	/ 33	N/Div											
Penetration	Force Gau	a		Force on	libration	4.33	N/Div	0.180 •									*	1
of plunger	reading	30		nlunger		California Bearing R	atio Results										×	
mm	divisions			kN		oanomia bearing iv												
	Top	Bottom		Ton	Bottom	Top	Base									/	*	
0.00	0.0	0.0		0.000	0.000	TOP	Dase	0.160										-
0.25	1.0	2.0		0.000	0.000											×		
0.50	3.0	4.0		0.004	0.000											1 /	4	
0.75	5.0	5.0		0.010	0.077										/			
1.00	6.0	6.0		0.022	0.022			0.140							-			
1.00	7.0	7.0		0.020	0.020											1		
1.20	8.0	8.0		0.035	0.030													
1.50	10.0	10.0		0.000	0.000													
2.00	11.0	11.0		0.048	0.048			0.400										
2.00	12.0	12.0		0.040	0.040			z ^{0.120}										1
2.20	14.0	13.0		0.061	0.056	0.46	0.43	<u> </u>					×					
2 75	15.0	15.0		0.065	0.065	0.40	0.40	jge .					× ×					
3.00	16.0	16.0		0.000	0.000			'n ·										
3 25	18.0	17.0		0.000	0.000			9 0.100 ·										-
3 50	19.0	18.0		0.070	0.074			۰ ۲										
3 75	21.0	20.0		0.002	0.070			e										
4 00	22.0	21.0		0.095	0.001			p j										
4 25	24.0	22.0		0.000	0.001			0.080 -										-
4.50	25.0	24.0		0.104	0.000													
4.75	26.0	25.0		0.100	0.104													
5.00	27.0	26.0		0.117	0.113	0.58	0.56					1						
5.25	29.0	27.0		0.126	0 117	0.00	0.00	0.060										
5 50	30.0	28.0		0.120	0.121			0.000										
5 75	32.0	29.0		0.139	0.121													
6.00	33.0	30.0		0.100	0.120													
6.25	35.0	32.0		0.140	0.139													
6.50	36.0	33.0		0.156	0.100			0.040 •										-
6.75	37.0	34.0		0 160	0 147													
7.00	38.0	35.0		0 165	0 152													
7.25	40.0	36.0		0.173	0,156				/	4								
7.50	41.0	37.0		0.178	0.160			0.020									+	-
Moisture content	after test		Top	Middle	Base	Specimen wt a	4650											
Container No.			Trav	Trav	Trav	Diameter mm	152											
Mass of wet soil ·	+ container	a	1817.9	1858.7	1445.2	Lenath mm	127.0											
Mass of dry soil +	- container	q	1554.6	1580.3	1236.3	0		0.000										
Weight of contain	ner	a	185.4	144.3	144.2			0.	00 1	.00 2	.00 3	.00 4.	00	5.00	6.00	J 7	s 00.'	3.00
Mass of moisture		a	263.3	278.3	208.9	Average MC %	19.25					Denetret						
Drv weight		a	1369.2	1436.1	1092.1	Density Ma/m3	2.02					Penetrat	ion mm					
Moisture content		%	19.2	19.4	19.1	Drv Density Ma/m3	1.69											
						,,g,g						— Тор	Base					
NM																Date	Project No.	NMTL310
111						Project [.]	Hackettstown							Operator	Tch	16-Doc-10	Trial Bit No	CBD22
11.							i laonotiotown							Operator		10-Dec-19	mai Filmu.	UDR22
Lto	1											GII Project ID: 9	225-11-19	Checked	Nc		Sample No.	В
														Approved	Bc		Depth	0.50m

Soil Description	Brown sligh	tly gravell	y silty SAN	ND		Data	16 Dec 10	0.400										
Test Method	BS 1377 P	art 4 · 100	0.74			Date	16-Dec-19	0.400]									7
Force Measuring	Device	VJT 0821	1				Test 1											
Preperatic Remou	ulded with 2.5	ka ramme	er at natur	al moistu	re content	t												
Surcharge	10 kPa	5		Mean Ca	alibration	4.33	N/Div											
Penetration	Force Gauc	e		Force or	า	4.33	N/Div	0.250								/		
of plunger	reading			plunger		California Bearing R	atio Results	0.330								/		
mm	divisions			kŇ		-%			1									
	Тор	Bottom		Тор	Bottom	Тор	Base		-							1		
0.00	0.0	0.0		0.000	0.000				1									
0.25	2.0	3.0		0.009	0.013				-							/		
0.50	4.0	5.0		0.017	0.022			0.300							/	/	1	-
0.75	6.0	6.0		0.026	0.026				-							×		
1.00	8.0	8.0		0.035	0.035				-							×		
1.25	11.0	10.0		0.048	0.043				-					/				
1.50	13.0	12.0		0.056	0.052				-							×		
1.75	15.0	14.0		0.065	0.061			0.250						/				_
2.00	18.0	17.0		0.078	0.074			_	-					X				
2.25	21.0	19.0		0.091	0.082			Ϋ́Υ	-					×				
2.50	24.0	21.0		0.104	0.091	0.79	0.69	ē										
2.75	27.0	24.0		0.117	0.104			bu					1					
3.00	30.0	27.0		0.130	0.117			B 0.000										
3.25	33.0	29.0		0.143	0.126			<u> </u>										
3.50	36.0	32.0		0.156	0.139			0	-			/						
3.75	39.0	35.0		0.169	0.152			õ	1									
4.00	43.0	37.0		0.186	0.160			ድ	1			/						
4.25	46.0	40.0		0.199	0.173				-				C C C C C C C C C C C C C C C C C C C					
4.50	50.0	43.0		0.217	0.186			0.150										-
4.75	53.0	46.0		0.229	0.199				-									
5.00	56.0	49.0		0.242	0.212	1.21	1.06		-									
5.25	59.0	51.0		0.255	0.221				-									
5.50	63.0	54.0		0.273	0.234				-									
5.75	66.0	57.0		0.286	0.247			0.100	-									_
6.00	69.0	59.0		0.299	0.255				-		1 A							
6.25	72.0	61.0		0.312	0.264				-									
6.50	76.0	64.0		0.329	0.277				-									
6.75	80.0	67.0		0.346	0.290													
7.00	83.0	70.0		0.359	0.303			0.050	1									4
1.25	85.0	72.0		0.368	0.312			2.200										
7.50 Maiatura aantant	87.0 efter test	74.0	Ten	0.377 Middle	0.320	Consistence unt a	5000											
Container No	aiter test		тор	Trovi	Dase	Specimen Wt g	50ZU 150											
Mass of wet soil	+ container	a	2138 /	1035 1	1/06 0		102											
Mass of dry soil		y a	1008 1	1726.2	1330.9	Longui min	121.0	0.000										
Weight of contain		g	180.1	187.3	188 7			0.000	0.00 1	.00 2.	.00 3.	00 4.0	0 5	5.00	6.0	0 7	7.00 8	3.00
Mass of moisture		9	230.3	208.0	157.5	Average MC %	13 55											
Dry weight		g	1718.0	1538.0	1150.7	Density Ma/m3	2 18					Penetrati	on mm					
Moisture content		9 %	13.4	13.6	13.7	Dry Density Ma/m3	1 92											
		70	10.4	10.0	10.7	2.y Donoity Mg/110	1.02					— Тор	Base					
NM																Date	Project No.	NMTL3107
TL						Project:	Hackettstown							Operator	Tch	16-Dec-19	Trial Pit No.	CBR23
T4	4					•						GII Project ID: 93	25-11-19	Checked	Nc		Sample No	в
Lu	1											Sin i roject iD. 92		Approved	Bo		Denth	0.50m
	1													vhhinneg	50		Dopui	0.3011

Soil Description	Brown sligh	tly gravelly	y silty SAN	١D		Data	16 Dec 10		0.400										
Test Method	BS 1377- D	art / · 100	0.74			Date	16-Dec-19		0.400										7
Force Measuring	Device	VJT 08211	1				Test 1]										
Preperatic Remou	Ided with 2.5	kg ramme	er at natura	al moistu	re content														
Surcharge	10 kPa	3		Mean Ca	libration	4.33	N/Div												
Penetration	Force Gauc	je		Force or		4.33	N/Div		0.250										
of plunger	reading	-		plunger		California Bearing R	atio Results		0.550									/	
mm	divisions			kŇ		%													
	Тор	Bottom		Тор	Bottom	Тор	Base												
0.00	0.0	0.0		0.000	0.000				-									1	
0.25	2.0	2.0		0.009	0.009				-								×		
0.50	4.0	3.0		0.017	0.013				0.300 -										-
0.75	6.0	4.0		0.026	0.017				-										
1.00	8.0	5.0		0.035	0.022				-								1		
1.25	10.0	7.0		0.043	0.030				-							, , , , , , , , , , , , , , , , , , ,			
1.50	12.0	8.0		0.052	0.035														
1.75	14.0	10.0		0.061	0.043				0.250 -										-
2.00	16.0	11.0		0.069	0.048			_	-						/				
2.25	19.0	13.0		0.082	0.056			ž	-										
2.50	21.0	15.0		0.091	0.065	0.69	0.49	er											
2.75	24.0	16.0		0.104	0.069			bu											
3.00	26.0	18.0		0.113	0.078			plu	0 200 -					· · · · ·					
3.25	29.0	20.0		0.126	0.087			E	0.200										
3.50	32.0	21.0		0.139	0.091			e 0											
3.75	35.0	23.0		0.152	0.100			ŝ	-					1					
4.00	38.0	25.0		0.165	0.108			ъ Ч	-				,						
4.25	41.0	27.0		0.178	0.117				-										
4.50	44.0	29.0		0.191	0.126				0.150 -				/						-
4.75	47.0	31.0		0.204	0.134								1		1				
5.00	50.0	33.0		0.217	0.143	1.08	0.71		-										
5.25	53.0	35.0		0.229	0.152														
5.50	56.0	37.0		0.242	0.160				-			/							
5.75	59.0	38.0		0.255	0.165				0.100 -										-
6.00	62.0	40.0		0.268	0.173				-			×							
6.25	65.0	42.0		0.281	0.182							1							
6.50	68.0	44.0		0.294	0.191														
6.75	71.0	46.0		0.307	0.199														
7.00	74.0	48.0		0.320	0.208				0.050 -			×							
7.25	77.0	50.0		0.333	0.217					A CONTRACT	-								
7.5U Maiatura aantant	0.06	52.0	Ten	0.340 Middle	0.225	Consistent ut a	4745												
Container No	aller lest		Trov	Trov	Trov	Diamatar mm	4740			A CONTRACTOR									
Moss of wot soil		a	1910 0	1722 0	1670 F	Longth mm	132			A A A A A A A A A A A A A A A A A A A									
Mass of dry soil +		g	1580.5	1522 /	1/6/ 2	Lengui min	127.0		0.000										
Weight of contain	or	g	144.0	187.6	1404.2				0.000 4	0 1.00	2.00) 3.	00 4.	.00	5.00	6.0	00	7.00	8.00
Mass of moisture		g	220.6	210.7	206.3	Average MC %	15 70		•										
Dry weight		g	1/36 5	133/ 8	1320.0	Density Ma/m3	2.06						Penetrat	tion mm					
Moisture content		y %	1430.5	15.8	1520.2	Density Ng/115	2.00												
		/0	10.0	15.0	13.0	Dry Density Mg/III3	1.70						— Тор	— ▲ — Base					
NM																	Date	Project No.	NMTL3107
TL	1					Project:	Hackettst	own							Operator	Tch	16-Dec-19	Trial Pit No.	CBR24
TE						•							CII Project ID: 0	225-11-10	Checked	No	-	Sample No	в
Lto	'											, i	an Project ID: 9	223-11-19	Checked	Ro		Donth	0.50m
	1														Approved	DC		Depth	0.5000

	POINT LOAD STRENGTH INDEX TESTS ISRM : 1989													
вн	Depth		Width	Platen Senaration	Failure	De2	Point Load							
No	m	Orientation	(\\/)	(D) mm	Load (P)	mm2	Index(Is)		18(50)		LICS			
NO.		Chemation	(W) mm	Measured	kN	mmz	Mn/m2		Mna		Mpa			
BH02	10,15-10,35	D	195.0	63.34	15.0	4012	3,738825		4,208		84,16			
BH02	10.15-10.35	A	63.3	97.93	17.0	12211	1.392218		4.773		95.45			
BH04	11.4-11.60	D	97.9	63.31	5.0	4008	1.247456		1.404		28.07			
BH04	11.4-11.60	A	63.3	49.66	5.0	3140	1.592379		1.404		28.07			
RC08	12.2-12.4	D	203.0	63.40	18.5	4020	4.602494		5.183		103.65			
RC08	12.2-12.4	А	63.4	77.80	19.4	7707	2.517285		5.435		108.70			
RC08	12.6-12.7	D	96.8	63.92	11.0	4086	2.692273		3.044		60.88			
RC08	12.6-12.7	А	63.9	88.65	16.0	10006	1.599014		4.428		88.55			
RC09	13.1-13.3	D	198.0	63.60	16.0	4045	3.955540		4.461		89.22			
RC09	13.1-13.3 D 190.0		63.6	81.82	19.2	8524	2.252538		5.353		107.07			
RC09	15.0-15.2	D	201.0	63.66	19.0	4053	4.688353		5.290		105.80			
RC09	15.0-15.2	А	63.7	98.25	17.0	12291	1.383164		4.733		94.67			
Notes:	1. Specimens 2. Orientation 3. D= Diamete	tested as recei of specimens i erial	ived from s s not know	ite. n.										
	4. A= Axial			Project Name				Project No.	NMTI 3196	Tested	09/06/2020	Signed		
NMTI	td			Hackott	stown			1.0,000 1.00.		Tab	00/00/2020	Po		
					SIOWII			1		1 CH		DC		

Issue :

Element Materials Technology Unit 3 Deeside Point Zone 3 **Deeside Industrial Park** Deeside CH5 2UA

P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland ac-MR Attention : Mike Sutton Date : 16th December, 2019 9225-11-19 Your reference : Our reference : Test Report 19/19841 Batch 1 Location : Hackettstown Date samples received : 4th December, 2019 Status : Final report 1

Three samples were received for analysis on 4th December, 2019 of which three were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name:										
Reference:										
Location:										
Contact:										
EMT Job No:										

Ground Investigations Ireland 9225-11-19 Hackettstown Mike Sutton 19/19841

Report : Solid

	4.0	4.0	7.0								
EMT Sample No.	1-3	4-0	7-9								
Sample ID	TP05	TP06	TP10								
Depth	0.50	0.50	0.50						Discourse		
COC No/misc									abbrevi	e attached n ations and a	cronyms
Containers	VJT	VJT	VJT								
Sample Date	29/11/2019	29/11/2019	29/11/2019								
Sample Type	Soil	Soil	Soil								
Batch Number	1	1	1							Unite	Method
Date of Receipt	04/12/2019	04/12/2019	04/12/2019						LOD/LOIX	OTING	No.
Antimony	1	2	1						<1	mg/kg	TM30/PM15
Arsenic [#]	10.7	8.4	9.3						<0.5	mg/kg	TM30/PM15
Barium [#]	58	65	67						<1	mg/kg	TM30/PM15
Cadmium #	0.5	0.4	0.5						<0.1	mg/kg	TM30/PM15
Chromium [#]	53.4	63.6	64.5						<0.5	mg/kg	TM30/PM15
Copper [#]	20	14	15						<1	mg/kg	TM30/PM15
Lead [#]	10	15	10						<5	mg/kg	TM30/PM15
Mercury #	<0.1	<0.1	<0.1						<0.1	mg/kg	TM30/PM15
Molybdenum [#]	1.2	2.6	1.2						<0.1	mg/kg	TM30/PM15
Nickel [#]	45.1	27.9	39.1						<0.7	mg/kg	TM30/PM15
Selenium [#]	1	<1	<1						<1	mg/kg	TM30/PM15
Zinc [#]	53	53	47						<5	mg/kg	TM30/PM15
PAH MS											
Naphthalene #	<0.04	<0.04	<0.04						<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03						<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05						<0.05	mg/kg	TM4/PM8
Fluorene [#]	<0.04	<0.04	<0.04						<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	<0.03	<0.03	<0.03						<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04						<0.04	mg/kg	TM4/PM8
Fluoranthene #	<0.03	<0.03	<0.03						<0.03	mg/kg	TM4/PM8
Pyrene *	<0.03	<0.03	<0.03						<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	<0.06	<0.06						<0.06	mg/kg	TM4/PM8
Chrysene [#]	<0.02	<0.02	<0.02						<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07	<0.07						<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	<0.04	<0.04	<0.04						<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	<0.04	<0.04	<0.04						<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	<0.04	<0.04						<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	<0.04	<0.04	<0.04						<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	<0.04						<0.04	mg/kg	TM4/PM8
PAH 6 Total [#]	<0.22	<0.22	<0.22						<0.22	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.64	<0.64						<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	<0.05						<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02						<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1						<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	97	98	92						<0	%	TM4/PM8
Mineral Oil (C10-C40)	<30	<30	<30						<30	ma/ka	TM5/PM8/PM16
	~ 50	~ 50	~ 50						~ 50	mg/Ag	
	1	1	1	1		1	1	1	1		1

Client Name:										
Reference:										
Location:										
Contact:										
EMT Job No:										

Ground Investigations Ireland 9225-11-19 Hackettstown Mike Sutton 19/19841

Report : Solid

		•		•				-					
EMT Sample No.	1-3	4-6	7-9										
Sample ID	TP05	TP06	TP10										
Depth	0.50	0.50	0.50								Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containors	VIT	VIT	VIT										
Containers	VJI	VJI	VJI										
Sample Date	29/11/2019	29/11/2019	29/11/2019										
Sample Type	Soil	Soil	Soil										
Batch Number	1	1	1										Method
Date of Receipt	04/12/2019	04/12/2019	04/12/2019								LOD/LOR	Units	No.
TPH CWG													
Aliphatics													
>C5-C6 [#]	<0.1	<0.1	<0.1								<0.1	mg/kg	TM36/PM12
>C6-C8#	<0.1	<0.1	<0.1								<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1								<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.2	<0.2								<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 [#]	<4	<4	<4								<4	mg/kg	TM5/PM8/PM16
>C16-C21#	<7	<7	<7								<7	mg/kg	TM5/PM8/PM16
>C21-C35#	<7	<7	<7								<7	mg/kg	TM5/PM8/PM16
>C35-C40	<7	<7	<7								<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40	<26	<26	<26								<26	mg/kg	TM5/TM38/PM8/PM12/PM1
>C6-C10	<0.1	<0.1	<0.1								<0.1	mg/kg	TM36/PM12
>C10-C25	<10	<10	<10								<10	mg/kg	TM5/PM8/PM16
>C25-C35	<10	<10	<10								<10	mg/kg	TM5/PM8/PM16
Aromatics													
>C5-EC7#	<0.1	<0.1	<0.1								<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	<0.1	<0.1								<0.1	mg/kg	TM36/PM12
>EC8-EC10 [#]	<0.1	<0.1	<0.1								<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2								<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 #	<4	<4	<4								<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	<7	<7	<7								<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 #	<7	<7	<7								<7	mg/kg	TM5/PM8/PM16
>EC35-EC40	<7	<7	<7								<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40	<26	<26	<26								<26	mg/kg	TM5/TM36/PM8/PM12/PM1
Total aliphatics and aromatics(C5-40)	<52	<52	<52								<52	mg/kg	TM5/TM36/PM8/PM12/PM1
>EC6-EC10#	<0.1	<0.1	<0.1								<0.1	mg/kg	TM36/PM12
>EC10-EC25	<10	<10	<10								<10	mg/kg	TM5/PM8/PM16
>EC25-EC35	<10	<10	<10								<10	mg/kg	TM5/PM8/PM16
MTBE [#]	<5	<5	<5								<5	ug/kg	TM31/PM12
Benzene [#]	<5	<5	<5								<5	ug/kg	TM31/PM12
Toluene #	<5	<5	<5								<5	ug/kg	TM31/PM12
Ethylbenzene [#]	<5	<5	<5								<5	ug/kg	TM31/PM12
m/p-Xylene #	<5	<5	<5								<5	ug/kg	TM31/PM12
o-Xylene *	<5	<5	<5								<5	ug/kg	TM31/PM12
		_	_								_		-
PCB 28 "	<5	<5	<5								<5	ug/kg	TM17/PM8
PCB 52"	<5	<5	<5								<5	ug/kg	TM17/PM8
PCB 101 "	<5	<5	<5								<5	ug/kg	TM17/PM8
PUB 118"	<5	<5	<5								<5	ug/kg	TM17/PM8
PCB 138"	<5	<5	<5								<5	ug/kg	
PCB 153"	<5	<5	<5								<5	ug/kg	
	<5	<5	<5								<5	ug/kg	
Total / PCBs"	<35	<35	<35	1	1	1	1	1	1	1	<35	ug/kg	1 M1 7/PM8

Client Name:										
Reference:										
Location:										
Contact:										
EMT Job No:										

Ground Investigations Ireland 9225-11-19 Hackettstown Mike Sutton 19/19841

Report : Solid

							-		
EMT Sample No.	1-3	4-6	7-9						
Sample ID	TP05	TP06	TP10						
Depth	0.50	0.50	0.50				Please se	e attached n	otes for all
COC No / misc							abbrevi	ations and ac	cronyms
Containers	VJT	VJT	VJT				1		
Sample Date	29/11/2019	29/11/2019	29/11/2019				1		
Sample Type	Soil	Soil	Soil				1		
Batch Number	1	1	1						Method
Date of Receipt	04/12/2019	04/12/2019	04/12/2019				LOD/LOR	Units	No.
Natural Moisture Content	10.5	14.7	11.8				<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	9.5	12.8	10.5				<0.1	%	PM4/PM0
Hevevelent Chromium#	-0.3	-0.2	-0.2				-0.3	ma/ka	TM38/PM20
Chromium III	53.4	63.6	64.5				<0.5	mg/kg	NONE/NONE
								5 5	
Total Organic Carbon #	0.18	1.75	0.25				<0.02	%	TM21/PM24
	7.00	7.40	7.04				10.01	منتحب لبام	
рн	7.30	7.12	7.04				<0.01	pri units	11017 3/ F1011 1
Mass of raw test portion	0.1006	0.1154	0.1056					kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09					kg	NONE/PM17

Ground Investigations Ireland 9225-11-19 Hackettstown Mike Sutton 19/19841

Report : CEN 10:1 1 Batch

EMT Sample No.	1-3	4-6	7-9								1		
Sample ID	TP05	TP06	TP10										
Depth	0.50	0.50	0.50								Please se	e attached n	notes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VIT	VIT	VIT								1		
Osmula Dete	001	001	001								1		
Sample Date	29/11/2019	29/11/2019	29/11/2019										
Sample Type	Soil	Soil	Soil										
Batch Number	1	1	1									Unite	Method
Date of Receipt	04/12/2019	04/12/2019	04/12/2019								LOD/LOK	Onits	No.
Dissolved Antimony#	0.002	<0.002	<0.002								<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) #	<0.02	<0.02	<0.02								<0.02	mg/kg	TM30/PM17
Dissolved Arsenic [#]	<0.0025	<0.0025	<0.0025								<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10) #	<0.025	<0.025	<0.025								<0.025	mg/kg	TM30/PM17
Dissolved Barium #	<0.003	<0.003	<0.003								<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) #	<0.03	<0.03	<0.03								<0.03	mg/kg	TM30/PM17
Dissolved Cadmium #	<0.0005	<0.0005	<0.0005								<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005								<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	<0.0015	<0.0015	<0.0015								<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015	<0.015								<0.015	mg/kg	TM30/PM17
Dissolved Copper [#]	<0.007	<0.007	<0.007								<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) #	<0.07	<0.07	<0.07								<0.07	mg/kg	TM30/PM17
Dissolved Lead [#]	<0.005	<0.005	<0.005								<0.005	mg/l	TM30/PM17
Dissolved Lead (A10) #	<0.05	<0.05	<0.05								<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	<0.002	<0.002	<0.002								<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) #	<0.02	<0.02	<0.02								<0.02	mg/kg	TM30/PM17
Dissolved Nickel [#]	<0.002	<0.002	<0.002								<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02	<0.02								<0.02	mg/kg	TM30/PM17
Dissolved Selenium [#]	<0.003	<0.003	<0.003								<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) #	<0.03	<0.03	<0.03								<0.03	mg/kg	TM30/PM17
Dissolved Zinc [#]	0.004	0.005	0.004								<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10) #	0.04	0.05	0.04								<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF [#]	0.00001	0.00002	<0.00001								<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	0.0002	<0.0001								<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01								<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1								<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3	<0.3								<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3								<3	mg/kg	TM173/PM0
Sulphate as SO4 [#]	0.7	<0.5	<0.5								<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	7	<5	<5								<5	mg/kg	TM38/PM0
Chloride [#]	<0.3	<0.3	<0.3								<0.3	mg/l	TM38/PM0
Chloride [#]	<3	<3	<3								<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	6	4	3								<2	ma/l	TM60/PM0
Dissolved Organic Carbon	60	40	30								<20	ma/ka	TM60/PM0
pH	6.89	7.08	6.97								<0.01	pH units	TM73/PM0
Total Dissolved Solids [#]	42	44	50								<35	ma/l	TM20/PM0
Total Dissolved Solids [#]	420	440	500								<350	mg/kq	TM20/PM0
	1	1	1	1	1	1	1	1	1	1	1	1	1

Element Material	s lech	nology												
Client Name:	Ground In	vestigatior	ns Ireland		Report :	EN12457	2							
Reference:	9225-11-1	19												
Location:	Hackettst	own			Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub					
Contact:	Mike Sutt	on												
EMT Job No:	19/19841								_					
EMT Sample No.	1-3	4-6	7-9											
									1					
Sample ID	TP05	TP06	TP10											
Depth	0.50	0.50	0.50									Please se	e attached n	otes for all
COC No / misc												abbrev	ations and a	cronyms
Containers	VJT	VJT	VJT											
Sample Date	29/11/2019	29/11/2019	29/11/2019											
Sample Type	Soil	Soil	Soil											
Batch Number	1	1	1							Stable Non-				Method
Date of Receipt	04/12/2019	04/12/2019	04/12/2019						Inert	reactive	Hazardous	LOD LOR	Units	No.
Solid Waste Analysis														
Total Organic Carbon #	0.18	1.75	0.25						3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025						6	-	-	<0.025	mg/kg	TM31/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035						1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30						500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6	<0.22	<0.22	<0.22						-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64						100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Logobato														
Arconic [#]	<0.025	<0.025	<0.025						0.5	2	25	<0.025	ma/ka	TM30/PM17
Barium #	<0.03	<0.03	<0.03						20	100	300	<0.03	ma/ka	TM30/PM17
Cadmium "	<0.005	<0.005	<0.005						0.04	1	5	< 0.005	mg/kg	TM30/PM17
Chromium "	<0.015	<0.015	<0.015						0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper #	<0.07	<0.07	<0.07						2	50	100	<0.07	mg/kg	TM30/PM17
Mercury #	<0.0001	0.0002	<0.0001						0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	<0.02	<0.02	<0.02						0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel #	<0.02	<0.02	<0.02						0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead "	<0.05	<0.05	<0.05						0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony#	<0.02	<0.02	<0.02						0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03						0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc"	0.04	0.05	0.04						4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids"	420	440	500						4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	60	40	30						500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1006	0.1154	0.1056						-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	89.4	77.9	85.1						-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.889	0.875	0.884						-	-	-		I	NONE/PM17
Eluate Volume	0.8	0.78	0.8						-	-	-		I	NONE/PM17
nH [#]	7.30	7.12	7.04						-	-	-	<0.01	pH units	TM73/PM11
pri													P	
Phenol	<0.1	<0.1	<0.1						1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	<3	<3						-	-	-	<3	mg/kg	TM173/PM0
Outstate as COAT	7	-5	-5						1000	20000	50000	-5	ma/ka	TM29/DM0
Sulphate as SO4 "	2	<0	<0						800	15000	25000	<0	mg/kg	TM29/DM0
Chionae	<0	<0	<.5						000	13000	23000	<0	iiig/kg	110130/1710
														j

. . .

B.A 4 "		^ - I	
MOTIV		50	10
	-	00	II UI
	-		

Client Name:	Ground Investigations Ireland
Reference:	9225-11-19
Location:	Hackettstown
Contact:	Mike Sutton

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
19/19841	1	TP05	0.50	1-3	No interpretation possible
19/19841	1	TP06	0.50	4-6	No interpretation possible
19/19841	1	TP10	0.50	7-9	No interpretation possible

Asbestos Analysis

Element Materials Technology

Client Name:	Ground Investigations Ireland
Reference:	19/11/9225
Location:	Hackettstown
Contact:	Mike Sutton

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
19/19841	1	TP05	0.50	2	05/12/2019	General Description (Bulk Analysis)	Soil/Stone
					05/12/2019	Asbestos Fibres	NAD
					05/12/2019	Asbestos ACM	NAD
					05/12/2019	Asbestos Type	NAD
					05/12/2019	Asbestos Level Screen	NAD
19/19841	1	TP06	0.50	5	05/12/2019	General Description (Bulk Analysis)	Soil/Stone
					05/12/2019	Asbestos Fibres	NAD
					05/12/2019	Asbestos ACM	NAD
					05/12/2019	Asbestos Type	NAD
					05/12/2019	Asbestos Level Screen	NAD
19/19841	1	TP10	0.50	8	05/12/2019	General Description (Bulk Analysis)	Soil/Stone
					05/12/2019	Asbestos Fibres	NAD
					05/12/2019	Asbestos ACM	NAD
					05/12/2019	Asbestos Type	NAD
					05/12/2019	Asbestos Level Screen	NAD

Client Name:Ground Investigations IrelandReference:9225-11-19Location:HackettstownContact:Mike Sutton

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason							
	No deviating sample report results for job 19/19841												
						· · · · · · · · · · · · · · · · · · ·							

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 19/19841

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

EMT Job No: 19/19841

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

Method Code Appendix

EMT Job No: 19/19841

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes

Method Code Appendix

EMT Job No: 19/19841

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM0	No preparation is required.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR	

Issue :

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland ac-MR Attention : Mike Sutton Date : 13th December, 2019 9225-11-19 Your reference : Our reference : Test Report 19/19816 Batch 1 Hackettstown Location : Date samples received : 4th December, 2019 Status : Final report

Two samples were received for analysis on 4th December, 2019 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

1

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ground Investigations Ireland 9225-11-19 Hackettstown Mike Sutton 19/19816

Report : Solid

EMT Sample No.	1	2											
Sample ID	TP11	TPI 14											
Depth	1.50	1.50								Please see attached notes for al abbreviations and acronyms			
COC No / misc													
Containers	т	т											
Containers	1	1											
Sample Date	03/12/2019	03/12/2019											
Sample Type	Soil	Soil											
Batch Number	1	1								LOD/LOR Units Metho			
Date of Receipt	04/12/2019	04/12/2019										No.	
Sulphate as SO4 (2:1 Ext) #	0.0158	0.0099								<0.0015	g/l	TM38/PM20	
#													
рН‴	7.50	7.70								<0.01	pH units	TM73/PM11	
	L			l i i i i i i i i i i i i i i i i i i i	1	l	1	1	L				

Client Name:Ground Investigations IrelandReference:9225-11-19Location:HackettstownContact:Mike Sutton

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
			•	•	No deviating sample report results for job 19/19816	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 19/19816

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

EMT Job No: 19/19816

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No

Issue :

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland ac-MR Mike Sutton Attention : Date : 1st June, 2020 9225-11-19 Your reference : Our reference : Test Report 20/6499 Batch 1 Location : Hackettstown, Skerries Date samples received : 22nd May, 2020 Status : Final report

Four samples were received for analysis on 22nd May, 2020 of which four were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

1

Authorised By:

Phil Sommerton BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Ground Investigations Ireland 9225-11-19 Hackettstown, Skerries Mike Sutton 20/6499

Report : Liquid

 $\label{eq:Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle \\ H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3$

EMT Sample No.	1-8	9-16	17-24	25-32						
Sample ID	BH07	BH101	BH103	RC09						
Depth								Please se	e attached n	otes for all
COC No / misc								abbrevi	ations and a	cronyms
Containers				V H HNUE HCL Z P G						
Containers	VIIIIdi HOLLI G	VIIIII IIIII IIIIII	VIIIII IIIII IIIIII	VIIIII IIII IIIII IIIII IIIII						
Sample Date	20/05/2020	20/05/2020	20/05/2020	20/05/2020						
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water						
Batch Number	1	1	1	1					Linite	Method
Date of Receipt	22/05/2020	22/05/2020	22/05/2020	22/05/2020				LOD/LOR	Units	No.
Dissolved Arsenic [#]	<2.5	2.7	<2.5	<2.5				<2.5	ug/l	TM30/PM14
Dissolved Boron	70	56	53	35				<12	ug/l	TM30/PM14
Dissolved Cadmium [#]	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM30/PM14
Total Dissolved Chromium #	<1.5	<1.5	<1.5	<1.5				<1.5	ug/l	TM30/PM14
Dissolved Copper [#]	<7	<7	<7	<7				<7	ug/l	TM30/PM14
Dissolved Lead [#]	<5	<5	<5	<5				<5	ug/l	TM30/PM14
Dissolved Magnesium [#]	12.5	17.7	17.7	17.6				<0.1	mg/l	TM30/PM14
Dissolved Manganese #	161	34	199	2				<2	ug/l	TM30/PM14
Dissolved Mercury [#]	<1	<1	<1	<1				<1	ug/l	TM30/PM14
Dissolved Nickel [#]	2	2	6	<2				<2	ug/l	TM30/PM14
Dissolved Potassium [#]	3.4	5.0	1.7	0.7				<0.1	mg/l	TM30/PM14
Dissolved Zinc [#]	<3	<3	<3	<3				<3	ug/l	TM30/PM14
PAH MS										T144/51400
Naphthalene "	<0.1	<0.1	<0.1	<0.1				<0.1	ug/l	TM4/PM30
Acenaphthylene	<0.013	<0.013	<0.013	<0.013				<0.013	ug/i	TM4/PM30
Acenaphthene "	<0.013	<0.013	<0.013	<0.013				<0.013	ug/i	TM4/PM30
Fluorene	<0.014	<0.014	<0.014	<0.014				<0.014	ug/i	TM4/PM30
Phenanthrene	<0.011	<0.011	<0.011	<0.011				<0.011	ug/i	TM4/PM30
Anthracene	<0.013	<0.013	0.012	<0.013				<0.013	ug/l	TM4/PM20
Puropo #	0.030	<0.012	<0.012	<0.012				<0.012	ug/l	TM4/PM30
Pytene Benzo(a)anthracene#	<0.015	<0.015	<0.015	<0.015				<0.015	ug/l	TM4/PM30
Chrysene [#]	<0.010	<0.010	<0.010	<0.010				<0.010	ug/l	TM4/PM30
Benzo(bk)fluoranthene #	<0.018	<0.018	<0.018	<0.018				<0.018	ug/l	TM4/PM30
Benzo(a)pyrene #	< 0.016	< 0.016	< 0.016	< 0.016				< 0.016	ug/l	TM4/PM30
Indeno(123cd)pyrene [#]	<0.011	<0.011	< 0.011	<0.011				<0.011	ug/l	TM4/PM30
Dibenzo(ah)anthracene [#]	<0.01	<0.01	<0.01	<0.01				<0.01	ug/l	TM4/PM30
Benzo(ahi)pervlene [#]	<0.011	<0.011	<0.011	<0.011				<0.011	ug/l	TM4/PM30
PAH 16 Total [#]	<0.195	<0.195	<0.195	<0.195				<0.195	ug/l	TM4/PM30
Benzo(b)fluoranthene	<0.01	<0.01	<0.01	<0.01				<0.01	ug/l	TM4/PM30
Benzo(k)fluoranthene	<0.01	<0.01	<0.01	<0.01				<0.01	ug/l	TM4/PM30
PAH Surrogate % Recovery	76	76	76	76				<0	%	TM4/PM30
MTBE#	<5	<5	<5	<5				<5	ug/l	TM36/PM12
Benzene [#]	<5	<5	<5	<5				<5	ug/l	TM36/PM12
Toluene [#]	<5	<5	<5	<5				<5	ug/l	TM36/PM12
Ethylbenzene#	<5	<5	<5	<5				<5	ug/l	TM36/PM12
m/p-Xylene [#]	<5	<5	<5	<5				<5	ug/l	TM36/PM12
o-Xylene [#]	<5	<5	<5	<5				<5	ug/l	TM36/PM12

Ground Investigations Ireland 9225-11-19 Hackettstown, Skerries Mike Sutton 20/6499

Report : Liquid

 $\label{eq:Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle \\ H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3$

										-		
EMT Sample No.	1-8	9-16	17-24	25-32								
Sample ID	BH07	BH101	BH103	RC09								
Depth										Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	V H HNUF HCL Z P G											
Samula Data	20/05/2020	20/05/2020	20/05/2020	20/05/2020								
Sample Date	20/05/2020	20/05/2020	20/05/2020	20/05/2020								
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water							1	1
Batch Number	1	1	1	1						LOD/LOR	Units	Method
Date of Receipt	22/05/2020	22/05/2020	22/05/2020	22/05/2020								No.
TPH CWG												
Aliphatics												
>C5-C6 [#]	<10	<10	<10	<10						<10	ug/l	TM36/PM12
>C6-C8 #	<10	<10	<10	<10						<10	ug/l	TM36/PM12
>C8-C10"	<10	<10	<10	<10						<10	ug/l	TM36/PM12
>C10-C12"	<5	<5	<5	<5						<5	ug/i	TM5/PM16/PM30
>012-016	<10	<10	<10	<10						<10	ug/l	TM5/PM16/PM30
>010-021	<10	<10	<10	<10						<10	ug/l	TM5/PM16/PM30
Total aliphatics C5-35 [#]	<10	<10	<10	<10						<10	ug/l	TM5/TM36/PM12/PM16/PM3
Aromatics											0	
>C5-EC7#	<10	<10	<10	<10						<10	ug/l	TM36/PM12
>EC7-EC8 [#]	<10	<10	<10	<10						<10	ug/l	TM36/PM12
>EC8-EC10 [#]	<10	<10	<10	<10						<10	ug/l	TM36/PM12
>EC10-EC12 [#]	<5	<5	<5	<5						<5	ug/l	TM5/PM16/PM30
>EC12-EC16 [#]	<10	<10	<10	<10						<10	ug/l	TM5/PM16/PM30
>EC16-EC21 #	<10	<10	<10	<10						<10	ug/l	TM5/PM16/PM30
>EC21-EC35*	<10	<10	<10	<10						<10	ug/l	TM5/PM16/PM30
Total aromatics C5-35 "	<10	<10	<10	<10						<10	ug/l	TMS/TM36/PM12/PM16/PM31
Total aliphatics and aromatics(C5-35)*	<10	<10	<10	<10						<10	ugn	1100/11030/PM12/PM16/PM3
Total Phenols HPLC	<0.15	<0.15	<0.15	<0.15						<0.15	mg/l	TM26/PM0
Sulphate as SO4 #	26.2	60.1	89.9	21.3						<0.5	mg/l	TM38/PM0
Chloride [#]	31.2	27.0	49.6	51.2						<0.3	mg/l	TM38/PM0
Nitrate as NO3 [#]	26.2	45.4	65.2	26.8						<0.2	mg/l	TM38/PM0
Total Cyanide [#]	<0.01	<0.01	<0.01	<0.01						<0.01	mg/l	TM89/PM0
Ammoniacal Nitrogen as NH3 #	<0.03	<0.03	0.13	<0.03						<0.03	mg/l	TM38/PM0
Ammoniacal Nitrogen as NH4 #	0.03	<0.03	0.14	<0.03						<0.03	mg/l	TM38/PM0
Carbonate Alkalinity as CaCO3	<1	<1	<1	<1						<1	mg/l	TM75/PM0
Electrical Conductivity @25C#	522	487	483	400						<2	uS/cm	TM76/PM0
рН [#]	7.64	7.82	7.79	7.63						<0.01	pH units	TM73/PM0
	I	1	1	1	I	I	1	1	I	I	1	1

Client Name:Ground Investigations IrelandReference:9225-11-19Location:Hackettstown, SkerriesContact:Mike Sutton

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason				
	No deviating sample report results for job 20/6499									

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/6499

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

EMT Job No: 20/6499

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details	Yes			
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE re	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.	Yes			
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			

Method Code Appendix

EMT Job No: 20/6499

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM75	Modified US EPA method 310.1 (1978). Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				
TM76	Modified US EPA method 120.1 (1982). Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.	Yes			

APPENDIX 7 – Groundwater Monitoring

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

GROUNDWATER MONITORING

Hackettstown, Skerries

BOREHOLE	DATE	ТІМЕ	GROUNDWATER (m BGL)	Comments
BH03	20/05/2020	12:54	0.97	
BH05	20/05/2020	13:45	2.66	Dry weather for several
BH07	20/05/2020	12:46	0.97	weeks previous to monitoring
RC09	20/05/2020	14:15	5.15	